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The long-time behavior of the w-particle probability densities for a large, dilute system of point particles 
interacting with short-range repulsive forces is studied. The main result is an exact series for the w-particle 
density which consists of two parts. The first part is a time-independent functional of the singlet density 
which is expressed as a functional power series and which is a direct analog of the equilibrium density series. 
The second part is also a functional power series in the singlet density but the coefficients depend on time 
and on the initial correlations. The coefficients of both series are given explicitly in terms of operators which 
are determined by the dynamics of isolated groups of particles. It is demonstrated that these operators 
vanish for phase points corresponding to motions during which there are two or more groups of particles 
which either are statistically and dynamically independent or are such that each of them is dynamically con­
nected to the rest by no more than one particle. It is argued that all the terms of the exact series are finite 
and that the terms of second part (the error) decrease with increasing time so that the first part is the 
asymptotic form proposed by Bogoliubov. The relevance of the results for the Boltzmann equation is indi­
cated. A form of the Boltzmann collision integral which is valid in the steady state and to all orders of the 
density is described. 

I. INTRODUCTION 

ONE of the most important contributions to the 
understanding of the statistical mechanical basis 

of the Boltzmann equation has been the conjecture or 
assumption, made by Bogoliubov, that, in a dilute gas, 
the w-particle probability densities are functionals of 
the singlet probability density.1 The application of this 
idea to the derivation of the higher density corrections 
to the Boltzmann equation has been investigated by a 
number of authors.2-4 

I t is obvious, however, that the functional assump­
tion cannot be valid under all circumstances since, 
subject to rather weak conditions, the probability 
densities are quite arbitrary and one can conceive of 
possible ^-particle probability densities which are not 
compatible with any particular functional relationship 
to the singlet probability density. Thus, it is of some 
importance, for the foundations of the Boltzmann 
equation and even for the general statistical mechanical 
theory of nonequilibrium phenomena, to establish from 
fundamentals whether the w-particle probability densi­
ties in an imperfect gas become, in some sense, func­
t iona l of the one-particle probability density. The 
features of the system and the initial conditions which 
allow such a result are of some interest in themselves. 
Furthermore, in view of the general import of this result 
for the foundations of statistical mechanics, insights 
into the manner in which the probability densities 

1 N . N. Bogoliubov, J. Phys. (U.S.S.R.) 10, 265 (1946). See 
also, "Problems of a Dynamical Theory of Statistical Physics," 
translated by E. Gora, Providence College, 1959 (unpublished). 

2 S . T. Choh and G. E. Uhlenbeck, "The Kinetic Theory of 
Phenomena in Dense Gases," University of Michigan, 1958 
(unpublished). 

3 E. G. D. Cohen, lectures in Fundamental Problems in Sta­
tistical Mechanics, edited by E. G. D. Cohen (North-Holland 
Publishing Company, Amsterdam, 1962). 

4 M . S. Green, J. Chem. Phys. 25, 836 (1956), hereafter re­
ferred to as Paper I, 

evolve toward the functional form are especially 
valuable. 

In addition to these questions of principle are some 
more practical questions; namely, what is the explicit 
form of the functionals and how are they related to the 
known equilibrium expansions of the ^-particle densi­
ties? What is the form of the Boltzmann equation to 
all orders in the number density? 

In a previous publication, one of us, (MSG), has 
given a partial answer to some of these questions.5 The 
first two terms of a series expansion of the functional 
representing the pair density were derived under the 
following assumptions: (a) The interparticle forces are 
purely repulsive and short ranged, and (b) the proba­
bility densities satisfy the product condition at the 
initial instant with a correlation length of the order of 
the range of forces. The time for approach to the func­
tional form was estimated to be of the order of the ratio 
of the correlation length to a representative particle 
velocity. In addition, it was shown that, if the equi­
librium singlet density is substituted in the functional 
expression, the result coincides up to third order in 
density with the known density expansion of the equi­
librium pair density. 

The present work generalizes and completes paper I I 
by addressing itself to the proof of a general theorem; 
namely, supposing certain restrictions on the nature of 
the system and on the initial values, if the time is large 
enough, the time-dependent n-particle probability densities 
are certain time-independent junctionals of the one-
particle probability density. More symbolically, let any 
integer, say, a, denote the position and momentum (the 
"phase") of the ath particle and let / n ( l , - • -,n; t) de­
note the ^-particle probability density considered as a 
function of these one-particle phase points. The theorem 

6 M. S. Green, Physica 24, 393 (1958), hereafter referred to as 
Paper II. 
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says that there is a certain functional, /« (1 , • • • ,n \ fi(t)), 
which depends on the time only through fi(t), and 
which differs negligibly from the n-particle probability 
density if the time is large enough; that is, the error 
defined by 

S n ( l , - ">« ; / ) 

^ / n ( l , . . - , n ; / ) - / n ( l , - - - ^ l / i ( 0 ) (1.1) 

vanishes asymptotically in the time, /.6 

This work also makes contact with paper I particu­
larly by discussing some of the consequences of the 
theorem for the existence of a "generalized" Boltzmann 
equation. 

We propose to establish this asymptotic theorem 
under the following restrictions on the system and on 
the initial state: The probability densities describe a very 
large, dilute, system consisting of particles interacting with 
short-range, repulsive forces. Thus, the probability densi­
ties satisfy the infinite Bogoliubov, Born, Green, Kirk-
wood, and Yvon hierarchy and, moreover, their ex­
pansions in powers of the density are meaningful. The 
initial values of the probability densities satisfy the product 
condition which was proposed and discussed in paper I. 
Essentially, /n+m([w]+[W]; 0) satisfies this condition 
if it becomes the product fn([nT\; 0)fm([mT\; 0) when the 
phase points, \jf\ and \jn], are sufficiently separated.7 

An exact series expression for the ^-particle proba­
bility density will be established. I t will be shown that, 
under the restrictions just stated, this result lends itself 
rather naturally to a demonstration of the theorem 
and an understanding of the questions posed above. 
The expression is composed of two parts each given as 
a functional Taylor series in the one-particle density, 
fi(t); one part is just the asymptotic functional which 
has been denoted by fn(£n~]\fi(t)) and the other is the 
error 8n comprising the system's memory of its initial 
condition. 

The asymptotic functional has a special form which 
is a generalization of the result for jT2(121 jTi) given in 
paper I I . I t is a functional power series in f\(t) with 
time-independent coefficients; that is, it may be ex­
pressed as8 

/ (Wl/ i ) 

= £-(*([*])*•«<»> (M;KI) n /i(«;/), (1.2) 
l>0l\J a^[n]+[l] 

where the "coefficient-operator" Ti{n) is a sum of prod­
ucts of time-independent substitution operators each of 
which uniquely maps any given phase point into an-

6 Note that the theorem is easily restated for the time-dependent 
analogs of the Ursell-Mayer functions of equilibrium theory by 
using the relation (algebraic) between these and the w-particle 
densities. 

7 Here and in the following, the symbol [n~] denotes a set of n 
integers, say, {ai,- • •,«»)• 

8 The product symbol is the usual one while the symbol 
"fdiDJ)" n a s t n e same meaning as " fd$\d$r • -dpi," where 

other one.9 The error Sn is similarly expressed10 but the 
coefficients, which are generalizations of the r j ( n ) , 
depend explicitly on time and on the initial correla­
tions. The coefficients of both the asymptotic functional 
and the error are analogous to the irreducible clusters 
of equilibrium theory in Jthat they are sums of not-
more-than-singly-connected products of operators char­
acteristic of the dynamics of isolated groups of particles. 
Roughly speaking, the terms of the asymptotic func­
tional correspond to motions for which, at the initial 
time, the particles are moving freely and are uncorre­
lated while the error term corresponds to motions of 
initially correlated or interacting particles. 

An important feature of the exact series expression is 
that both kinds of coefficients vanish for phase points 
such that one or more subgroups of particles are "singly 
connected." Singly connected groups are so called be­
cause of their analogy to singly connected clusters in 
the equilibrium theory of dense gases; essentially, they 
are groups whose motion is statistically and dynami­
cally independent of the motion of all other particles 
except (possibly) for one "connecting particle." This 
property of the coefficients has several consequences for 
the exact series expansion: I t implies that the only 
contributions to the error arise from points for which 
there are interactions and correlations present at the 
initial instant and for which there are no singly con­
nected groups. In addition, this property guarantees 
that all the integrals have finite values at any finite 
time and that the terms in the error decrease with in­
creasing time. The leading term in the two-particle 
probability density, for example, is proportional to t~l. 

The procedure to be used in establishing the exact 
series expression and its consequences can be outlined 
in the following way. Rather than assuming the detailed 
form of the coefficients and then proving its validity, we 
will give arguments which lead to their structure in a 
natural way. Thus, while we assume that the asymp­
totic functional has the structure indicated by Eq. 
(1.2), the coefficient operators ri(n) are specified only as 
being time-independent substitutuion operators (i.e., 
we assume only that we are dealing with a time-inde­
pendent functional). To develop an expression for the 
error, we use the formal series solution of the infinite 
hierarchy for the fn which expresses them in terms of the 
solutions of isolated w-particle problems. This result, 
which is derived in paper I,11 is briefly recapitulated in 
Sec. I I . Then, by assuming the general structure of the 
asymptotic functional, this exact solution is used to 
develop a form for the error which involves only the 
n{n) and the solutions of n-particle Liouville equations. 
Thus, to discuss the long-time behavior of the error, 

9 This expression for the asymptotic functional (see Sec. IV 
for definition) of rz(w) has also been derived for n = 2 by E. G. D. 
Cohen, J. Math. Phys. 4, 183 (1963). 

10SeeEq. (5.1). 
11 Actually what is given there is the analogous series for Ursell 

functions. Our result is simply obtained from this by using the 
well-known relation between Ursell functions and densities. 
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the asymptotic behavior of the solution of Liouville's 
equation for, say, n particles is needed and this is dis­
cussed in Sec. I I I . 

In Sec. IV, we show that this asymptotic behavior 
together with the supposition that / ( [ V ] | / i ) is the 
asymptotic form leads to a full determination of the 
rz (n). A similar argument, given in Sec. V, leads to a 
useful and more transparent expression for the error 
in terms of / i and coefficient operators which are 
natural generalizations of the r j ( n ) and which include 
all the effects of initial conditions. In this manner, we 
arrive at the exact series representation of the n-
particle probability density in a form which can be used 
to analyze long-time behavior. Sections IV and V also 
contain statements of the properties of the coeffi­
cient operators along with some discussion of their 
implications. 

Finally, in the last section, various properties and 
consequences of this exact functional series for fn are 
given. In particular, we argue that the error terms de­
crease in time and also discuss the consequences of the 
theorem for the generalized Boltzmann equation. 

II. THE ERROR IN TERMS OF LIOUVTLLE FUNCTIONS 

In order to determine the form of the coefficient 
operators n(n) and to analyze the error Sn a suitable 
exact expression for the ^-particle densities is needed. 
We choose for this a formally exact series solution of 
the infinite hierarchy which is given in terms of a se­
quence of functions £m, each of which is a solution of 
Liouville's equation for some number m of isolated 
particles. For convenience, we will refer to such func­
tions as "Liouville functions" in the sequel.12 In this 
section, we will review this result and some of its 
properties and then use it to derive an expression for 
the error in terms of Liouville functions. 

A. A Series Solution of the Hierarchy 

A series solution of the initial value problem for the 
infinite hierarchy obeyed by the fn has been given in 
Paper I.11 The result is that for densities which satisfy 
the product condition initially, one has that 

/ (M;0 = E -frf(D3¥(n)(H;C(]W). (2.1) 

The functions \f/i(n) are denned in terms of Liouville 
functions %m in the same manner as the "modified 
Ursell functions" of equilibrium theory are denned in 
terms of the Boltzmann factors; that is, for example, by 

12 The £w have a physical meaning in themselves. They are the 
probability densities at [w] under the condition that a large 
enough region surrounding [_m~] is empty of particles. For further 
discussion refer to the lectures by M. S. Green, in Lectures in 
Theoretical Physics, edited by W. E. Britten, B. W. Downs, and 
Joanne Downs (Interscience Publishers, Inc., New York, 1961). 

the recursion relation: 

*(M+p])= £ ^ (w)(W;ra)f(ra), (2.2) 

where the summation is over all partitions of [7] into 
two disjoint parts, [}f\ and \_k~], either of which may be 
empty.13 The explicit solution of Eq. (2.2) for ypi{n) is 
given in Appendix A, Eq. (A3). The functions i^(1) 

defined by Eq. (2.2) are the same as the ipi+i of Paper I 
(except for factors of the number density). 

Since the Liouville function £m is by definition the 
solution of Liouville's equation for m isolated particles, 
the formal solution of the initial value problem may be 
written as 

«H; l )^ (H_ i ; 0)^_ f (H)5(H;0) , (2.3) 

where the phase point [m]-t is the particular point 
which evolves into [_m~] during an interval t under the 
natural motion of the m particles. The operator 
S-t([wi2)> defined by this equation, has been intro­
duced for notational convenience. I t is the time-
dependent substitution operator which projects the 
point [_m~] into its "image" t seconds earlier; that is, as 
the time t increases, it generates the prior trajectory 
of the point [m].14 

Using Eq. (2.1), \piM and hence fn at time / are 
determined by the initial values of the sequence of 
Liouville functions. These initial values should be 
thought of as determined for a given sequence, fi(t= 0), 
/ 2 ( / = 0 ) , •••, through Eqs. (2.1) and (2.2) evaluated 
at the initial time. As has been shown elsewhere, since 
the fn(t=0) satisfy the product condition, so do the 
£m(^=0) and, as a consequence, the \pi(n) have a cluster 
property. 

I t is significant that the /th term in the series for fn 

involves the initial data and the dynamics of not more 
than (n-\-l) isolated particles. However, probably the 
most important feature of this formal solution has 
already been discussed in papers I and I I ; namely, 
that each term in the series is asymptotic to a power 
of the time so that the later terms in the series grow 
faster with time than the earlier terms.15 Hence, any 
number of terms of the series is a useful approximation 
to fn only for short enough times (essentially for times 
small compared to the mean time between collisions). 
With this fact in mind, it will be helpful to consider as 
our goal the discovery of a transformation of Eq. (2.1) 
to a form which is valid for large times; i.e., we want, 

13 Thus, in this summation \Ji] runs over every distinct (per­
mutations of a given set are not distinct) subset, proper or not? 
of [/]; in particular, if [&] = [/'] and M = P"J is one term, [_h~] 
= P"J and [&] = [TJ is another. Also note that here and elsewhere 
time dependence is suppressed unless needed for emphasis or 
clarity. Similarly, variables (sets) of summation are suppressed 
whenever there is no ambiguity. 

14 Thus, S-t(\jnJ) is equivalent to exp(—itLm) where Lm is the 
m-particle Liouville operator. 

16 To see this requires knowledge of the behavior of Liouville 
functions for long times and we will return to this point briefly 
in Sec. IV. 
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somehow, to use short-time information to deduce long­
time information. 

B. An Expression for the Error 

The solution given by Eq. (2.1) can be used to ex­
press the error Sn in terms of the \pi{n) and eventually 
in terms of the Liouville functions. 

This is simply achieved by noticing that, according 
to Eq. (1.1), if we assume the general form for the 
asymptotic functional given by Eq. (1.2), the error 
Sn is thereby expressed in terms of fn and / i . Then, if 
we evaluate this result by substituting for fn and / i 
their expressions in terms of the ^ ( n ) and i^ (1 ), re­
spectively, and collecting terms involving the same 
numbers of integration variables, we obtain (see Ap­
pendix A) an expression for Sn in terms of the \pi(n) and 
V^(1). Since, however, it is the time dependence of the 
Liouville functions rather than that of the \pi{n) which 
is most easily understood, it is useful to go one step 
further and make the dependence of the error on the 
Liouville functions fully explicit. To accomplish this 
we have only to express \pi{n) and ^fc

(1) (in the result to 
which we have just referred) in terms of the £m using 
the definition, Eq. (2.2). 

The full transformation of Eq. (1.1) to the form 
explicit in the Liouville functions is carried out in 
Appendix A we find that 

i>vl\J 

x E 3) ( n )(W;W)^o(M), (2.4) 

where the summation has the same meaning as in Eq. 
(2.2). The factor £>*<*> is defined by 

©(w)(W;[A]) = f (W+M) 

- £ rC»)([n];M)a(M+M;[f]) , (2.5) 
[<d+[r]=[A] 

where the object Cfc([V]; [V]) is a sum of products of 
the £m. I t is defined by 

a(M;H) 
E I I f(«,M)^«-2([i'o]), (2.6) 

[»o]+2«[»a] = [t»] ct£[u] 

where the sum is over all partitions of \Y\ into (u+1) 
parts, [z>0] and the [fl J , some of which may be empty. 

For convenience, we have introduced in Eq. (2.6) 
the sum 0<r(\V\) (for the case a=u— 2). This is defined 
to be unity for z;=0 and for v^l it is defined by 

v (<r-\-p)\ P 

^ ( H ) - £ ( - D p E n * ( M ) , (2.7) 
p = l a ! <P: [y~\ in to p £= l 

where the summation is over all distinct partitions of 

[V] into p, nonempty disjoint parts, [y$]. Thus, 
Cfc([V]; \jT\) is a sum of products of £m whose arguments 
are disjoint subsets of [ V ] + H w ^ n u °f them con­
taining a single member of [_u] (i.e., these are ''hooked 
on" to \jf\). Finally, the factor #o appearing in Eq. 
(2.4) is determined by Eq. (2.7) for the case (7=0. 

Equation (2.4) together with the Eqs. (2.5), (2.6), 
and (2.7) which define £)z(ri) and $ff in terms of the £m 

is the desired expression for Sn in terms of Liouville 
functions. 

III. PROPERTIES OF LIOUVILLE FUNCTIONS 

Having achieved an expression for the error in terms 
of Liouville functions, the significance of their asymp­
totic behavior for the properties of the error is manifest. 
I t is already clear from the examples in Papers I and I I 
that if an w-particle Liouville function satisfies the 
product condition initially, it eventually becomes de­
termined by Liouville functions of lower order; that is, 
£( [m]; t), say, asymptotically approaches a particular 
product of Liouville functions of lower order evaluated 
at time t and at points which are definite functions of 
[m~], 

Our purpose here is to state and discuss these asymp­
totic forms, reiterating and generalizing those already 
given in Papers I and I I and also quoting some addi­
tional ones which will be needed. A new notation is 
used which sharpens the results and seems easier to 
manipulate. Classical analogs of scattering operators 
arise naturally in the discussion and some of their 
properties, which are analogous to those of the £m, will 
also be given. 

The detailed nature of the asymptotic form for a 
given point depends on certain structural (or topo­
logical) characteristics of its prior trajectory. In order 
to have a convenient visualization of such character­
istics we will use diagrams which represent for a given 
point, say, [ w ] , the projection of the prior trajectory 
[nf\-t onto ordinary configuration space. Of course, 
the diagrams do not represent every detail of the tra­
jectory of a point but only what will be called its 
"collision history." The collision history of a point 
essentially16 consists of the following information about 
i t : (a) on its entire prior trajectory, which collisions have 
occurred and their order and, (b) on the portion of its 
trajectory occurring at and before the initial instant, 
which correlations have occurred (particles are under­
stood to be correlated if they are within some correla­
tion length of each other). Clearly, then, each diagram 
represents many points all having the same collision 
history. 

As an example of such diagrams consider Fig. 1. 
The solid lines represent single-particle trajectories and 
circles represent collisions between the particles whose 
trajectories are enclosed. Circles at the initial instant 

16 The additional bit of information which is needed is described 
in Sec. IIIB. 
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FIG. 1. Typical diagram of a collision history illustrating 
correlations and a collision at the initial time. 

represent either collisions or correlations between the 
enclosed particles and it will not be necessary to ex­
plicitly indicate correlations prior to the initial instant. 
The order of collisions is obvious, while the double line 
at the bottom represents an infinite earlier time; i.e., 
the diagram says that no other collisions than the one 
between particles 1 and 2 occur for times more than / 
seconds earlier. I t will be important to realize that, if 
one considers the history of the same point, say, At 
seconds later, the only effect on the diagram is to 
change the indicated position of the origin of time to a 
position At seconds earlier.17 

In addition to diagrams representing collision his­
tories we will also use diagrams which we will call 
"schematics" of collision histories. These simply repre­
sent whole classes of collision histories all having the 
same general character. For example, Fig. 6 is schema­
tized by Fig. 2 (see also Fig. 5). 

A. Statistical and Dynamical Independence 

Because of the assumed fmiteness of the correlation 
length and the range of force, one is rather naturally 
led to introduce concepts of statistical and dynamical 
independence. Since these concepts will be used ex­
tensively in the sequel, a brief elaboration will be given. 

Several (disjoint) groups of particles are dynamically 
independent during an interval of time if there are no 
collisions between any particles belonging to different 
groups during the interval. Therefore, when we say 
that, for the point [m~] the groups [ w \ ] are dynamically 
independent during some time interval, the immediate 
consequence (or even the meaning) is that, for times 
within the interval, 

S-«(M) = riS-((l>x]), (3-D 
x 

where the phase points [ w \ ] , appearing as arguments, 
are just the projections of [nf\ onto the respective 
wx-particle phase spaces. 

Similarly, several groups of particles are statistically 
independent at a given time if each particle of any one 

17 This is why one must know correlations during the entire 
interval prior to the initial instant. 

R. A. P I C C I R E L L I 

group is separated from every particle of any other 
group by a distance greater than the correlation length. 
Thus, when we say that the point [nf\ is such that at 
the initial time, the groups [ w \ ] , which partition [ w ] , 
are statistically independent, we mean that the phase 
points [m\]-t, which are the image points of the groups 
[m\ ] , t seconds earlier,18 are sufficiently separated so 
that the product condition is satisfied; that is, we can 
say for such points that 

£(M-«;0)=Il£(M- f;0) 
X 

-S_ t ( [>])I I I (M;0) . (3.2) 
X 

Furthermore, saying that statistical independence holds 
anywhere in the time interval [0, — oo ] for a given 
point [ w ] means that once Eq. (3.2) holds for some 
given time it holds for all longer times. 

I t seems evident that for an arbitrary point and at 
any time there is, in general, some partition of the par­
ticles into disjoint groups which is such that these 
groups are statistically and dynamically independent 
for all of the prior trajectory occurring at and before 
the initial instant (that is, for what might be called 
the "early" history of the point). Thus, for example, 
those points [ w ] , for which, say, the groups [m\] are 
statistically and dynamically independent in the time 
interval [0, — oo ] have histories in this interval which 
can be schematized as indicated (for this interval) in 
Fig. 2. In this diagram the heavy lines in the early 
history denote the groups [wx], and within these 
groups the history may have any degree of complexity. 
Clearly, the only points whose early history cannot be 
so schematized for some choice of sets [wx] are those 
for which all m particles are "linked up" prior to the 
initial instant. 

I t will become apparent that the statistical and dy­
namical independence of early histories guarantees the 
asymptotic nature of the functionals to be derived. 
Also, it determines how the particles are assigned to 

FIG. 2. Schematic of the history of not-more-than-singly-con-
nected points illustrating disconnected sets [dp] a n d singly con­
nected sets \ja2.m Supposing other particles to be absent, the 
group [c] has a history which is complete. 

18 The phase [m\]-t is the projection of \_nf\-t onto the m\-
particle phase space. 

file:///_nf/-t
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the argument sets of the Liouville functions which occur 
as factors in the asymptotic form. 

B. Complete Points 

I t seems appropriate to investigate first the behavior 
of Liouville functions for points which have the simplest 
of early histories; namely, all points \jc] which are such 
that, for time t, every particle is statistically and dynami­
cally independent before (and at) the initial instant. 
Furthermore, we shall not make any further qualifica­
tions about the point [c~], so that the particles may 
have any sort of collision structure after the initial in­
stant. Thus, the points \jT\ we have in mind have 
histories which can be schematized for time t by the 
case of Fig. 2, which occurs when there are no other 
particles present except those in the set [_c] (i.e., by the 
projection of the history of all the particles onto the 
space of the particles, \Y]) so that the early history of 
the particles \V\ is as indicated by the dashed lines. 

Such points will be called "complete" for time t. 
We hasten to add that this notion does not mean that 
no collisions are in progress at time t, but only refers 
to the fact that for such points collision events occur 
only within the interval and not at or prior to the initial 
instant.19 I t is clear (from the meaning of statistical and 
dynamical independence) that if a point is complete for 
a time t it remains so for all larger times. Moreover, 
because we are assuming finite range, repulsive forces, 
it seems evident that (except possibly for a set of zero 
measure) all points eventually become complete so that 
the volume of points which are complete increases in­
definitely with the time. 

If M i s a point which is complete for time /, 
£ ( H > 0 reduces to a product of one-particle Liouville 
functions evaluated at certain one-particle phase points 
and at time t. In fact, one can establish by a simple 
argument that, if [_c] is complete for t, then 

*(H;0 = s(M) II &(<*;/), (3.3) 
a€[c] 

where S([V]) is a time-independent substitution opera­
tor defined by the statement: 

S(M) = limS_((H) II St(a). (3.4) 
t-**> a etc] 

To determine the effect of the operator S([c]) on the 
phase of some member, say 0, of the set [V), consider 
the operator the limiting value of which is S([c]). The 
instruction for this operator is: For the given point [c] , 
compute according to the natural motion of all c par­
ticles, the image /3_* of particle ($ at a time / seconds 
earlier, and the compute the phase that ($ would have 
had at time t if it had moved freely from the point £_*. 
Now, although neither S-t([_cJ) nor TLaE[c]St(a) oper-

19 To emphasize the uncorrected character of the early history 
of such points, one can think of them as being "chaotic" in an 
appropriate special sense. 

ating separately yields a limiting value for large times 
(because the positions which result keep changing), 
their product does have a limit because eventually any 
point [c~\ is complete. For, once we have gotten the 
image point of some particle at a time earlier than the 
time at which it begins its first collision, for all larger 
times the projection forward according to free particle 
motion always gives the same point.20 

This understanding of the operator S([c]) not only 
makes Eq. (S.3) a definite algorithm (considering the 
obody scattering problem as solved), but it also pro­
vides the basis for a simple proof of this equation which 
is sketched in Appendix B. 

Some features of this first property of the Liouville 
functions are noteworthy. Because of the remark made 
above that almost all points eventually become com­
plete, one can say that the result Eq. (3.3) holds for 
almost all phases [c] , if the time is long enough; that 
is, if it is greater than some time, say, the time T([_cJ) 
indicated in Fig. 2.21 In this sense, the result holds 
asymptotically in time. However, since no time is 
larger than T({V]) for all possible phases [Y], the 
approach of £ ( H ; 0 to the form given by Eq. (3.3) 
is nonuniform; for any time t there are always points 
which are not complete for which this form is not a 
good approximation. Still, it is true that Eq. (3.3) 
becomes valid in a region which grows with time and 
one can say that, because the Liouville functions obey 
the product condition initially, they have a "molecular 
chaos" property asymptotically in time. 

C. Not-More-Than-Singly-Connected Points 

Included in all the points which are not complete 
for time t, there are some for which the asymptotic 
form is still simple in the sense that, like that in Eq. 
(3.3), it is still a time-independent functional of Liou­
ville functions of lower order evaluated at time t. These 
points will be called "not-more-than-singly-connected" 
and can be schematized as in Fig. 2, where the groups 
[dp] will be referred to as "disconnected/' while the 
groups [so] will be described as "singly connected." 
The meaning of these concepts, which is suggested by 
the "connectivity" of the trajectories as indicated in 
Fig. 2, is already essentially correct but a brief elabora­
tion will be given. Then the asymptotic form of a Liou­
ville function evaluated at such a point and some 
related results will be presented. 

A suitable characterization of the kind of point to be 
discussed is as follows: Consider, for a point [m~] and 
at time t, the partitions of the set [m~] into groups [m\], 
which are statistically and dynamically independent 
before the initial instant. The point [m~] will be not-
more-than-singly-connected if there is some such parti-

20 This is illustrated in Fig. 9 where the double-primed points 
are time-dependent while the single-primed ones are not. 

21 Because of the way increasing time is indicated by the dia­
grams, this time corresponds to an interval as is indicated. 
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0 

FIG. 3. Subdiagram illustrating relation of a singly 
connected group to the other particles. 

tion for which the history following the initial instant 
satisfies certain conditions. 

The first such condition is anticipated by the ter­
minology ; namely, at most one particle from each group 
[m{] collides with members of other groups in the 
interval [0,f\. This condition implies that, in general, 
some of the \jn\] may be statistically and dynamically 
independent subsets of [ni] (under the natural motion 
of all m particles) during the entire infinite interval 
D> ~ °°1' Each such set will be referred to as being 
"disconnected." Each of the remaining subsets will 
contain a single "connecting" particle, all of these 
taken together composing a set, say, [c]= {ah- • -yac}. 
For convenience, these remaining subsets of [ni] will 
be denoted by {a,[s«]} where a G [ c ] and the set [sa] 
is the rest of the group which contains the particle a. 

With the imposition of this first condition the sets 
[sa] are not yet "singly connected." One can only say 
that the first collision of any particular connecting 
particle a must occur at some finite time after the initial 
instant22; particle a moves along a straight-line path 
(its "leg") from its last collision with members of the 
group [sa] to its first collision with other members of 
the group [c]. There is still the possibility, however, 
that, after colliding with other members of [c], particle 
a may become reinvolved with the group [sa]. 

The elimination of this possibility is the role of the 
second condition which is that once the connecting 
particle (if any) of one of the groups [ni\] has begun a 
collision with a particle of some other group, this con­
necting particle is dynamically independent of the re­
maining members of its group. Thus, in a group 
{a,[s J } the particle a is dynamically independent of 
[sa] after it begins its involvement with other members 
of the group [c], When this condition is satisfied, the 
set [c] of all connecting particles has a phase point 
(projection of [ni] onto the space of the set [c]) which 
is complete. Furthermore, each of the sets [sa] are 
dynamically independent subsets of [ni] during some 
portion of the time following the initial instant; in 
fact, the group [sa] say, becomes dynamically inde-

22 Otherwise, [w\] and, say, [m\'2 would not be dynamically 
independent at the initial instant. 

pendent of all other particles after its involvement with 
particle a is finished. 

When these two conditions are satisfied by a point, 
it can certainly be schematized as in Fig. 2. There is a 
third condition, however, which must be fulfilled if the 
property of "being singly connected" is to be useful. 
One must also have that the point [ni] be such that 
for the prior trajectory of each (l+sa)-particle point 
S ( H ) ( « > [ ^ J ) , the particle a is dynamically inde­
pendent of [sa] under ( l+s a)-part icle dynamics in an 
interval [ra,t], where the time ra is between the initial 
instant and the time t—Ta([c]), when the particle a 
begins its first collision with other members of [c]. The 
character of these times is indicated in Fig. 3 which 
gives the graphical meaning of this condition; namely, 
that each subgroup {«,[$«]} must have such a diagram 
where the kinked trajectory of the particle a represents 
its actual track under the natural motion of all m par­
ticles. The possibility being ruled out is a case where 
there is an "aiming to collide" between some members 
of [sa] and the dashed track of particle a.23 

When all three of these conditions are met, the 
groups [sa] will be called singly connected. One can say 
that a group is singly connected if it collides only with 
the leg of a single particle and if it does so while the 
leg is still "free." 

If a point [ni] is not-more-than-singly-connected, 
one has for £ {[ni]); t) the following form: 

f ( W ) = 5 ( H ) n *(«,[>«]) n « M ) , (3.5) 
aE[c) 0 

where the sets are chosen in accordance with the above 
discussion; namely, [c] is the set of connecting par­
ticles for the singly connected sets [sa], while the [dp] 
are the disconnected sets. A heuristic proof of the 
validity of Eq. (3.5) is presented in Appendix B. I t 
should be understood that Eq. (3.5) like Eq. (3.3) is an 
asymptotic expression in the sense that, if it is valid 
for a particular point [ni] at time t, it is valid for [ni] 
for all longer times. This, as has been mentioned, is a 
consequence of the assumed statistical and dynamical 
independence of the groups {«,[$«]} before the initial 
instant.24 

As might be expected, the scattering operators Sm 

have a reduction which is analogous to the asymptotic 
form for Liouville functions. For not-more-than-singly-
connected points and, in fact, for the slightly wider 
class of points for which no qualifications are made 
about correlations, one has that 

«(W)=sflvp n sfooj) n s ( ra , (3.6) 

23 In the sequel, consider the notion of collision history as 
amended to include this kind of information about the prior 
trajectory of [ni], 

24 Since the features of [ni], as exhibited in Figs. 2 and 3, which 
allow the steps in the derivation of the result, are still present if 
the t = 0 line is shifted to earlier times. 
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where the sets have the same meaning as in Eq. (3.5).25 

The generality and flexibility of these two results 
should be noted. For example, one may choose to lump 
any or all of the [dp] with one or several of the [sa], 
and/or to make explicit use of the fact that any of the 
[dp] may have a structure like that of the point 
( t Y l + S «[<*«]), and/or to make explicit some discon­
nected subgroups of [c], and so forth. In any of these 
cases, obvious formulas specializing Eqs. (3.5) and 
(3.6) may be written at will. In particular, notice that 
by recognizing, for a given point, those groups of 
particles which are disconnected (e.g., in Fig. 2 the 
group {[c]+IZaC^«]} is itself disconnected), one de­
rives for the Liouville function an analog of the product 
condition which is valid for an interval of time rather 
than for an instant. 

D. General Asymptotic Form 
For the points discussed so far, the correlation car­

ried from the initial time is, in fact, just such as to 
make no contribution to the error. Furthermore, the 
asymptotic forms for them are essentially contained in 
papers I and I I . We turn now to the most general kind 
of point some of which do indeed contribute to the error. 

I t is clear that, although we can always find a parti­
tion of [_m~] into groups [m{], which are statistically 
and dynamically independent before the initial instant, 
one cannot generally expect that the point is not-more-
than-singly-connected. For an arbitrary point one must 
expect to find that every such partition has at least one 
subgroup containing at least two members which interact 
with some other group during the interval [0, / ] , and 
such points will be called "more-than-singly-con­
nected." Of course, we can still expect that some of 
the groups [m\] will consist of single particles, while 
others will have a connecting particle a and its com­
plement [sa], such that [sa] is singly connected, and 
still others will be totally disconnected. Thus, an arbi­
trary point [m] for time t has a history which can be 
schematized as in Fig. 4, where the sets, [i], [c], and 
the [sa] partition [m] into (c+2) disjoint parts and 
any or all of the [sa] may be empty. Completely dis­
connected sets are not indicated but are to be considered 
as subsumed in the groups [sa] in any convenient way.26 

The set [i] is the part of [m] which contains no singly 
connected parts like the [sa]', it may, in fact, split 
into statistically and dynamically independent sets 
before the initial instant, but this need not be indicated. 
We will refer to [i] as the " incomplete more- than-singly-
connected group" of the point or more briefly, as the 
"incomplete group."27 A simple example of a point 

25 To see this apply the argument of Appendix B to S-t([mJ) 
XliaG[m]St(oi) and then take the limit. 

26 The extension of the result to be given to the case where some 
of the [m\] are entirely disconnected will be obvious. 

27 Notice that if, for a given point at time t the group p ] is 
empty, the point is not-more-than-singly-connected. Alternatively, 
for a given point, when the time becomes so large that the par­
ticles in [i~] become statistically and dynamically independent, the 
point becomes not-more-than-singly-connected. 

/ \ a i / \ a c / 

FIG. 4. Schematic of the history of more-than-singly-connected 
points. The projection of such points onto the space of the group 
p ] + [ c ] illustrates a tightly connected point. 

which is more-than-singly-connected is diagrammed in 
Fig. 9, where the set \_i~] consists of particles 1 and 2 and 
the set [c] consists of particle 3, 

By arguments similar to those used to establish the 
previous asymptotic forms, it can be shown that, if 
[_m~] is any more-than-singly-connected point (as 
schematized in Fig. 4), then one has for ^([m]; l) that 

K M ; 0 = s(WIM) n f(«,M; t), (3.7) 
aS[c] 

where [i] is the incomplete group of the point, [c] is 
the complete group, the [sa] are the singly connected 
groups, and all these sets form a partition of [m] into 
disjoint parts. The operator S([i] | [c]) is defined by 

si,c(raiM)-KP]-<;0)s(p]+[c]); (3.8) 
that is, it is the operator in c-particle space which sub­
stitutes S ( p ] + W ) H for the phase point [c], and 
multiplies the result by the number £ ( H - « ; 0), which 
depends on both the time and the initial correlations 
of the set [f\. In particular, we will adopt the conven­
tions §>o,c= Sc and S»,o= &. 

A heuristic proof of the result given by Eq. (3.7) is 
indicated in Appendix B ; the argument parallels that 
used to establish Eq. (3.5) and begins by proving the 
result for the case when there are no sets which are 
not-more-than-singly-connected. I t should be empha­
sized that this expression for £([ni]; t) is valid for any 
point [m], because the sets [i], [c], and the [sa] can 
always be chosen as described. 

One perhaps anticipates that the generalized scatter­
ing operator §>([m1]\[m2]) has properties consistent 
with its "mixed" nature (i.e., a function of time as 
well as an operator). With respect to the set [w 2 ] , its 
behavior is similar to that of §>([mi]+[m2]), while, 
with respect to the set [ w j , it has properties like those 
of £ ( [w i ]+ [w2] ; / ) . In fact, if [m] is a more-than-
singly-connected point and if [mi] and [m%] partition 
[m] into two disjoint groups, then one has that 

S ( [ w i ] | | > 2 ] ) 

= S(pi]|p2]+[ci]+M) II S t e M M ) 
a£[c i ] 

X IT S(C^iJ|a,[^])IIS(C^]IC^]), (3.9) 



1396 M . S . G R E E N A N D R . A . P I C C I R E L L I 

' 2|2 2 3 [s] 

(a) 

{3.H} 

(b) 

FIG. 5. Diagram (a) illustrates a history which is a case of 
those schematized in (b) and for which a further reduction in 
the asymptotic form is possible. 

where the subscripts 1 and 2 on the various sets indi­
cate whether the set is contained in [mi] or [m2] while 
the "name" of the set has its previous meaning; for 
example, [i{] is the part of the incomplete group of the 
point which is contained in [m{] while [if] is the part 
in [m2]. Although a proof of this general result will not 
be given, a result which is essentially a special case of 
Eq. (3.9) is established in Appendix B and the argu­
ment used for this purpose is easily generalized. 

E. Additional Reductions 

In the preceding discussion various aspects of the 
histories of phase points have been characterized by 
introducing concepts of completeness and connectivity. 
The results which have been established in terms of 
these concepts are the asymptotic forms for Liouville 
functions embodied in Eqs. (3.3), (3.5), and (3.7) and 
the corresponding equations for the scattering operators, 
§>m and Smim2. Indeed, the form given by Eq. (3.7) in­
cludes all the others as special cases. These asymptotic 
forms corresponding to schematics of histories are, 
however, only the general ones, which apply to a whole 
class of histories. For any particular member of such a 
class, further reductions, the form of which depends on 
the point, are usually possible. Since character of such 
reductions should be understood in analyzing the error, 
some elaboration will be given. 

For example, consider a history which can be dia­
grammed as in Fig. 5(a). This is one of those having a 
schematic as in Fig. 5(b). According to Eq. (3.5), the 

asymptotic form for points the schematic of which is 
as in Fig. 5 (b) is 

€ (123H) = S(12){(23M). (3.10a) 

According to Fig. 5(a), the same form applies to, 
(2123[>]) where 21 2=S(12)2; that is, 

€(2i?3H) = S(2i23)£(3H). (3.11) 

Hence, for points having a history as in Fig. 5(a), 

f (123M) = S(12)S(23)£(3H). (3.10b) 

Clearly, the point, S(12)S(23)(3,(V]) may also have 
singly connected parts and then further reductions of 
the same kind could be made by repeated application of 
Eq. (3.5). I t should be noted that the product of the 
§>m which has appeared in Eq. (3.10b) is ordered ac­
cording to the order of the collision events for the point. 

The general result suggested by these remarks is 
indeed correct. I t is that, for a point with a particular 
not-more-than-singly-connected history, the asymptotic 
form can be written as a "corresponding" not-more-than-
singly-connected, ordered product of the operators §>m, 
operating on the appropriate product of £m's, where 
some of the %m are "hooked on" to the operators and 
some are entirely disjoint. Here, a not-more-than-
singly-connected product of the Sm is one in which any 
factor has an argument containing no more than 
one member in common with the argument of any 
predecessor. 

Similarly, consideration of examples of particular 
histories of more-than-singly-connected points shows 
that Eq. (3.7) can also be successively applied to "sub-
diagrams" of a schematic such as the one in Fig. 4; 
i.e., each of the sets [sa] may have a schematic of this 
kind, and so on. The result suggested is again the cor­
rect one; namely, that any more-than-singly-connected 
point with a particular history has an asymptotic form 
which is a corresponding not-more-than-singly-connected, 
ordered product of the Smim2 operating on an appropriate 
product of the £m, where again some of them are hooked 
on and some are not. A not-more-than-singly-connected 
product of the S ( p ] | H ) is one in which any factor 
has an argument, say, p<J+C c J> containing no more 
than one member in common with the complete part, 
say, [_ca'~], of the argument of any predecessor; that is, 
if the arguments of two factors do have a common 
member it is contained in the complete part of the 
factor which occurs first.28 

To summarize this entire discussion of the properties 
of the Liouville functions and the scattering operators 
naturally associated with them, one can say that, for 
initial values which satisfy the product condition, a 
Liouville function can be expressed by a product of 
Liouville functions of lower order for those groups of 
particles which are not more than singly connected, 

28 For example, one has S(12|3)S(45|3) and S(12|3)S(34|5) but 
not, say, S(12|3)S(14|5). 
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wherein each factor of the product the single particle 
through which the others are connected is taken at a 
point determined by the solution of the scattering 
problem for all those particles which are more-than-
singly-connected, and where the whole product is 
multiplied by a factor determined by the full dynamics 
of these particles and the initial correlations among 
those which are incomplete. This is the result expressed 
by Eq. (3.7). In addition, the generalized scattering 
operators S([w J | [^2]) have a similar reduction deter­
mined by the history of the point ( [ w i ] + [ m 2 ] ) . 
Several other results which were given can be con­
sidered as special cases of these two.29 We terminate our 
discussion by remarking that the same expressions which 
are valid asymptotically can also be valid for a given 
time t under weaker conditions than those stated; 
namely, when only those parts of the given conditions 
which are relevant to the structure during the interval, 
[0, /] , are satisfied.30 Then, however, the forms do not 
necessarily apply for longer times. 

IV. THE TERMS IN THE ASYMPTOTIC FUNCTIONAL 

The asymptotic functional / ( [ V ] | / i ) n a s already 
been assumed to have the structure of a "power series'' 
in fi(t). To determine the coefficient operator n{n) of 
this series a principle suggested by the long-time be­
havior of Liouville functions will be used. The principle 
states that there should be no contribution to the error 
from certain points. Imposing such a requirement yields 
a recursion relation for the TIM which defines them to 
be a sum of not-more-than-singly-connected products 
of the scattering operators STO. With the ri(n) so defined, 
f([n~] I /1) is completely determined and the question of 
the finiteness of the integrals arises. I t is shown that the 
ri(n) vanish identically for certain points whose con­
tributions could lead to divergence of the integral. 

A. Determination of the ^ ( n ) 

I t was shown in Sec. IB that the error made by sup­
posing fn to be a time-independent functional of f± can 
be expressed [see Eq. (2.4)] as a series of integrals 
whose integrands are sums of products of Liouville 
functions, some of which are operated upon by, say, 
rq

(n). The integrand of the /th term in §n is parameter­
ized by the phase [n~] and is a function of the one-
particle phases of the set [/], which are the variables of 
integration. Referring to Eqs. (2.4) and (2.5), we see 
that the Liouville functions which appear depend on 
these variables in two ways: either directly as argu­
ments or indirectly in that, because of the operation of 
one of the substitution operators in, say, rq

(n\ for some 
of the £m one of the arguments is itself a function of the 

29 It is noteworthy that the \j/i{n) and the corresponding "Ursell" 
operator (see Sec. IVB) have analogous properties which are 
implied by these properties of the £w. 

30 For example, for the point diagrammed in Pig. 6 particle 4 
may be disconnected during the interval / and one can write the 
appropriate case of Eq. (3.6) until the time t-\-At. 
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phase of some of the particles in the set, [ V ] + K I -
Therefore, any £m which appears has an argument 
which is a definite point in w-space and this point is 
completely determined as soon as the point flV]+[T]) 
is fixed. 

We have said in Sec. I I IB that almost every point 
becomes complete so that for, fixed \_m\ i*(\jn];t) 
eventually attains the form given by Eq. (3.3). There­
fore, we can say that, for any fixed point in (n+l)-
particle space (since then the arguments of all the £w 

are fixed), there is always a time long enough so that 
every £m in the integrand of the /th term of the error 
can be replaced by the form given in Eq. (3.3). The re­
sulting expression for the integrand for such points, 
which will be called "complete in the wider sense," 
is that 

E 3D ( , , )(W;M;^o(M;0 

= £ z?(->(W;W)/.(W) 

X II f i(«;0, (4.1) 

where D ( n ) ( [V]) ; [/&]) and /o([&]) are defined by the 
expressions which result when, in the defining equa­
tions for £ < n ) ( M ; M ) and 4o([>]) [i.e., Eqs. (2.5) 
and (2.7)], one simply replaces each factor %(\jn]) by a 
factor S([w]) so that, for example, I0 is defined in 
terms of Sm in the same way as #0 is defined in terms of 
£m. Because of the nature of points which are complete 
(w.s.) if Eq. (4.1) is valid for a given (n-\-l)-particle 
point at time t, it remains valid for all longer times.31 

More importantly, this form is valid in a region of 
(n~\-l)-particle space which grows with time and eventu­
ally becomes essentially the whole space. 

Now, if the asymptotic functional f([n~]\J\) is to 
become a better approximation as the time increases, 
the error must decrease in time and we may suppose 
that it does so term by term. But, because the region 
where Eq. (4.1) applies grows in time, unless the inte­
grand of the /th term vanishes for this region, we would 
expect a contribution to this term which would either 
approach a constant value or diverge with time. We 
will therefore choose the rq

{n) so that the integrand of 
the /th term vanishes for all points which are complete 
in the wider sense. Since for this it is necessary and 
sufficient that the difference D(n\ which appears as a 
factor in each term of Eq. (4.1), vanishes for such 
points, this means that we require the ri(n) to be de­
fined by the equation: 

s(w+ra) 
L rW(WM(W;H) , (4.2) 

31 For brevity, the phrase "in the wider sense" will often be 
denoted by "(w.s.)-" 
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FIG. 6. An example of a not-more-than-singly-connected point. 
If only the aiming to collide between particles 2 and 3 were present, 
particle 3 would still be singly connected in a certain sense. 

which is simply a transcription of the statement that 
Din) vanishes.32 The quantity A([u~]) \YJ) is the sum 
of products of the Sw which results when one substitutes 
Sm for £m in the expression for <3(M;[V | ) given by 
Eq. (2.6). 

Equation (4.2) is a recursion relation for the rz (n ) . 
I t can be completely solved and yields the result that 
ri{n) is equal to the sum over all distinct, not-more-
than-singly-connected, ordered products of operators 
Sm, where m^ 2, with the following conditions: (a) The 
set of indices (arguments) involved in any product 
includes the set [rf\ and is included in the set [ V ] + K ] 5 
and (b) the first §> operator in any product contains at 
least all of [n~]}z 

Since the explicit expressions for rz(w) are not needed 
in the sequel, a proof of this statement will not be given. 
For completeness, however, we include in Appendix C 
a statement of the detailed form of the coefficient of 
each term of the sum which defines r j ( n ) and also the ex­
plicit expressions for the first few sums TJ (2 ) , up to / = 4 . 

With the ri{n) explicitly given in terms of the scatter­
ing operators Sm, all the terms in the functional series 
for f(Ln~] I / i ) a r e completely determined for any value 
of n.u Thus, the question of the detailed form of the 
functional series is answered. Since the argument just 
given was only heuristic, it remains to be shown that 
fn does indeed approach this particular functional. 

B. Convergence of the Integrals 

Before analyzing the error which is now determined 
by this definition of the rz (n ), we wish to show that 
certain points, the contributions from which could cause 
the terms in f(\jf]\fi) to diverge, in fact, make no 
contribution to the integrals because the r j ( n ) vanish 
for such points. 

32 For convenience, the notation of Eq. (2.5) has been simplified 
by suppressing the distinction between the two sets in ri(nK 

33 Not-more-than-singly-connected products of scattering opera­
tors have been defined in Sec. HIE. 

34 I t may be remarked that Bogoliubov's asymptotic expres­
sions for the probability densities, while also given as a density 
series, seem to have coefficients of different form. It has been 
pointed out that, at least for the first few terms of /2, the ex­
pressions are equivalent. E. G. D. Cohen, however, has given ex­
pressions for the coefficients rf, which have the same form as 
those given here and which are identical with them for n = 2 up 
to four particles. 

The points in question are those containing groups 
which are essentially of the kind we have called singly 
connected. That such groups lead to the growth or 
divergence of the kind of cluster integral we encounter 
is suggested by the following analysis for the modified 
Ursell functions \pi{n) and the analogous operator Ui{n\ 
which is defined in terms of the Sm in the same way as 
the \piM are defined in terms of the £m. 

Considering first the functions \pi(n\ which are the 
integrands of the terms in the series for fny it has 
already been pointed out in papers I and I I that the 
regions where they are nonvanishing have significant 
features which were called "growing legs/ ' so named 
because their length increased with the time. In fact, 
each growing leg corresponds to a subgroup of particles 
which is singly connected in a certain sense. The growth 
in time of the integral over such a region is a conse­
quence of fact that the integrand is independent of the 
length of these growing legs. 

The existence of growing legs and the lack of de­
pendence on their length is illustrated by the following 
example. Suppose that the 2-particle point (1,2) is 
complete for time t and consider the integral of 
^ ( 2 )(12; 3,0 over those phases of particle 3, such that 
the 3-particle phase point (1,2,3) has the infinite history 
represented in Fig. 6 (i.e., project out particle, 4, from 
this diagram). For the history of the point (1,2,3), 
represented by this diagram, it is intended that the 
(2i2—3) collision occurs anywhere before the (1 — 2) 
collision and that there are no additional "aimings to 
collide" between particle 3 and any extension to earlier 
times of any particle (e.g., the indicated aiming to 
collide between particle 3 and the extension of particle 
2 does not occur). In the sense of including this last 
qualification, particle 3 is singly connected to the others. 
Thus, for fixed momentum of particle 3 and fixed impact 
parameter of the (212— 3) collision, the integration is 
over the location of this collision and corresponds to 
"sliding" particle 3 along the leg. 

Now, for fixed time t \p(i) (12 ;3,t) vanishes if this 
collision occurs before the initial time and does not 
vanish if it occurs after.35 Hence, in the space of the 
variable (r2l2—r3), this function is nonvanishing in a 
cylinder whose length is proportional to the time, and 
this cylinder is the "growing leg." Furthermore, for the 
points being considered, the value of this function is 
independent of the location of the collision (i.e., the 
length of the collision cylinder).35 Thus, the integration 
over the sliding variable can be performed making the 
contribution of such points proportional to the time. 

Similar circumstances cause, say, the Ith term to have 
contributions proportional to the time. Furthermore, 

35 To see this notice that regardless of when it occurs, for the 
point being considered £(123) is equal to S(12)£(23)£(l) and 
£(12) is equal to S(12)£(l)£(2) so that the value of ^<2>(12; 3) is 
S(12)[£(23)-£(2)£(3)]£(l). If the collision occurs before the 
initial instant £(2i23) is equal to £(2i2)£(3) and only then does this 
expression vanish. This means that regions for which particle 3 
is far from the others contribute significantly to the integral. 
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one can verify that for any point of the kind schema­
tized by Fig. 2, where the groups [sa~] are singly con­
nected in an appropriate sense, \j/i{n) has a value which 
is independent of the locations of the connecting colli­
sions and which vanishes if any of them occur prior to 
the initial instant. Since the integration over such points 
can be arranged to involve sliding the location of the 
connecting collisions, one has that, in general, groups 
which are singly connected in an appropriate sense lead 
to growth of the integrals of i^z(n).36 

Whereas groups which are singly connected in a cer­
tain sense lead to growth of integrals of \pi(n\ they lead 
to divergence of integrals whose integrands involve 
time-independent operators of the cluster type. Such 
integrals arise, for example, if one notices that there is 
a time so large that one can use Eq. (3.3) to express 
every £m occurring in, say, the integrand \f/i(n). Also, for 
very large times, the volume in phase space where this 
happens becomes very large. Hence, one might try to 
approximate the integral over \^ ( n ) by the integral 
over the asymptotic value of the integrand; that is, by 

where Ui{n) are the modified Ursell operators already 
defined. But, by reasoning parallel to that used for the 
original integrals of \//i(n) one can see that there are 
infinitely long regions in configuration space where the 

(a) 

I 2 | 2 2 • 3 4 

0 

(b) 

FIG. 7. An example of a more-than-singly-connected point; 
particle 4 is singly connected (w.s.) in (b) or if only one of the 
aimings in (a) occurs. 

36 In particular, the Zth term has a contribution proportional to 
tl arising from the case when each of the / particles is singly 
connected. 

( M]) } ( W ) 

[ ] o 

FIG. 8. An illustration of point which is arbitrary except that 
the group \j~\ is not-more-than-singly-connected (w.s.) to the 
others through some leg of the connecting particle X. 

integrands Uiin) are nonvanishing and have a value 
independent of the variable locating position along the 
cylinder. We call these regions "infinite legs' '; they 
again correspond to groups which are singly connected 
(in the same sense as is relevant to the discussion of 
\f/i(n)) and, clearly, they cause divergence of the inte­
grals (so that the attempted approximation fails). 

Now, the terms in the functional series given by Eq. 
(1.2) with the n(n) defined by the Eq. (4.2) are similar 
to the above integrals involving the Ui{n). Again, in­
finite legs corresponding to groups which are singly 
connected in some wider sense would provide an obvious 
source of divergence. Thus, to see that the functional 
series has more than purely formal character, we want 
to show that this source of divergence is ineffective. 

The reason for again qualifying the meaning of singly 
connected particles is this: To discuss the behavior of 
the \pi{n) or Ui(n), one has to know whether a supposed 
singly connected set has aimings to collide with "free-
particle extensions" of the final phases of any particles 
other than some one connecting particle. In fact, such 
aimings alone (without any actual collisions) can serve 
to singly connect one or several particles.37 In consider­
ing the integrals in f([jf\\fi) o n e must expect that 
aimings to collide with free-particle extensions of 
"derived points," which are produced by the operation 
of scattering operators, become relevant (simply be­
cause to evaluate rz (n) one must evaluate scattering 
operators at such points). For example, for the integra­
tion of the 4-particle term in the asymptotic functional 
/(121 / i ) over the position of particle 4 (with all other 
variables fixed), the point with a history as in Fig. 7 (a) 
where one or the other (not both) aimings occurs 
corresponds to an infinite leg just as does the point 
diagrammed in Fig. 7(b). Indeed, for the terms in 
/ ( [ V ] | / i ) , infinite legs correspond to points for which 
there are groups which are not-more-than-singly-con-
nected in the wider sense. 

A sufficient characterization of such groups is the 
37 For example, a discussion similar to that just given applies 

for points indicated by the case of Fig. 6 for which the (2-3) 
aiming does occur while the (2i2—3) collision does not. Thus, in 
discussing integrals of i/^(w) or Ui^n), particle 3 should be considered 
as singly connected. 
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following: A group of particles will be said to be not-
more-than-singly-connected in the wider sense if (a) it 
interacts with all other particles being considered at 
most through a single leg, virtual or real, of a single con­
necting particle, and (b) if this interaction occurs (if 
at all) while the leg of the connecting particle is still 
"free." This means that the relation of a group which 
is singly connected (w.s.) to others can be schematized 
as in Fig. 8 where the group [/] has no other aimings to 
collide except the one indicated by the wavy line. 

Consider the integration of the /th term in f([n~] \ fi) 
over points for which the set \T} contains a group QyJ 
which (as in Fig. 8) is not-more-than-singly connected 
(w.s.). The integration can be arranged to involve 
"sliding" the location of the collision of the set [V] with 
particle X to arbitrary early times. Thus, the integral 
will diverge because of an infinite leg unless the coeffi­
cient operator, TJ(W) vanishes for such regions. But, in 
fact, we have proved that : If a point flV]+[T]) is such 
that p ] contains a group [ s ] which is not-more-than-
singly-connected (w.s.) then r ( n ) ( [ V ] ; [/]) vanishes identi­
cally. This result is a special case of a more general one 
discussed in the next section and a description of the 
proof of it is given in Appendix E. There is nothing in 
this statement to preclude that the set [/] constituting 
the integration variables, in fact, contains many groups 
which are not-more-than-singly-connected (w.s.) (i.e., 
the region of integration may be the wider sense analog 
of Fig. 2), so that we have proved that none of the many 
possible infinite legs cause divergence of the terms in the 
asymptotic functional. 

With this result which is, of course, not sufficient to 
prove convergence of the terms in the asymptotic func­
tional,38 we leave the discussion of the character of the 
asymptotic form and begin a discussion of the error. 

V. ANALYSIS OF THE ERROR 

Recalling the discussion leading to the definition of 
the coefficient operators rz

(n ) , one can also take the 
converse position and say that if the r j ( n ) are defined 
by Eq. (4.2), then the factors £>z(n) in the error inte­
grand and hence the error integrands themselves vanish 
at least for points which are complete in the wider sense. 
In fact, it can be shown that this conclusion is also true 
for any point which is not-more-than-singly connected 
in the wider sense (i.e., which can be diagrammed by 
the wider sense analog of Fig. 2). Nevertheless, the 
error does not, of course, vanish for all points and, in 
particular, it does not vanish for any point for which 
there is an incomplete group [f\ (as illustrated in Fig. 
4). To establish the asymptotic theorem one must 
understand the contributions such points make to the 
error after very long times. 

For the expression of the error derived in Sec. II , 
however, the contributions from points having groups 
of particles which are singly connected in the wider 

38 See Sec. VIB for further remarks. 

sense cause the terms to grow with time. The reason 
for this is that the integrands of the terms are analogous 
to the \[/i(n); the regions where they are nonvanishing 
possess growing legs, each corresponding to a group of 
particles which is singly connected in the wider sense. 
Moreover, the value of the error integrand is inde­
pendent of the location of the connecting collisions (i.e., 
of the length of the legs) so that the integration over 
sliding variables can be performed yielding a result 
which grows with increasing time. These remarks are 
illustrated, for example, by the contribution to the 
4-particle term of the error £(12; / ) , from the point 
diagrammed in Fig. 7 (b); one finds that the integration 
over particle 4 yields a result which is proportional to 
the time.39 

This growth with time of the terms of the expression 
for the error given by Eq. (2.4) does not mean that the 
proposed asymptotic form is incorrect. Rather, it only 
implies that, like the original series for fn, this particular 
expression for the error is suitable for short times but 
not for long times. Or, one can say loosely that in this 
form one has expanded too far, representing decreasing 
functions of the time by power series in the time, so 
that one must somehow partially sum up again. 

Formal analogy with the structure and properties of 
the asymptotic functional suggests an expression for the 
error as a functional series in powers of fi(t); it is the 
products of fi(t) in this series which were previously 
"expanded." The coefficient operators which appear 
will be determined so that this series is indeed formally 
identical to the original one. Moreover, it will be shown 
the terms in the new series do not grow in time because 
of growing legs of the integrands. Finally, a partial 
evaluation of the error which is valid for large times 
will be derived. 

A. The Error as a Functional of fit) 

The form of the terms in the error expressed as a 
power series in fi(t) is suggested by the terms in the 
asymptotic functional. There is an obvious corre­
spondence between any of these terms and the sche­
matic of a complete point (none of which has any singly 
connected sets hooked on to its legs); namely, for each 
such point [c] , where, say, [ » ] C [ c ] , there is a term 
with the integrand r ( n )([c])IIaG[c]/i(«; 0- As we have 
already remarked, the difference between / „ and this 
series of terms (i.e., the error, Sn) has no contributions 

39 The integrand to which we refer involves the four cases of 
£>(2)(12; [/]) which occur for the four subsets of {3,4}. Because 
the (1-2) collision is complete, 2D<2)(12;0) vanishes. The fact 
that particle 4 is singly connected (w.s.) via the leg 3m implies, 
for example, that S(12)£(14) is equal to S(12)£(l)£(4) and 
S(12)S(23)£(14) is equal to S(12)S(23)£(1)£(4); in fact, it implies 
[by using the appropriate case of Eqs. (3.5) or (3.6)] that 
2D(2)(12;4) vanishes. In conjunction with the appropriate form 
of Eq. (3.7) for £(1234) and £(123), it also implies that the inte­
grand has the value [S(12|3)-S(123)£(l)£(2)](£(34)-£(3)£(4)) 
[the operator multiplying £(3) is 3D(2)(12; 3) and the other term 
is 2D(2)(12; 34)]. Clearly, this expression vanishes if the (3m—4) 
collision occurs before the initial time and this yields the growing 
leg. 
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from points which are complete (w.s.), and in addition, 
none from any point which is not-more-than-singly-
connected (w.s.). 

Now, let a more-than-singly-connected point which 
has no singly connected groups hooked on be called a 
"tightly connected point."40 Noticing the similarity of 
these points to complete points, consider a representa­
tion of fn by a generalized series of terms each of which 
corresponds to the schematic of a tightly connected 
point; namely, for each such point, ( H + M ) > where, 
say, [ V ] C H + H > there is a term with the integrand 
r ( n ) ( H I M ) I I a G [ c ] / i ( « ; 0 - I t is natural to expect by 
formal analogy that the difference between fn and such 
a series has no contributions either from points which 
are tightly connected (w.s.) or from any general more-
than-singly-connected point (w.s.), which does have 
singly connected groups hooked on as in Fig. 4.41 Since 
any point is some more-than-singly-connected point, the 
suggestion is, therefore, that the coefficient operators 
r(n) (£fj | [V]) c a n be determined so that this generalized 
series is a formal identity. Moreover, because the terms 
in this generalized series for fn which correspond to 
points having no incomplete part [f\ should be just the 
terms of the asymptotic functional, the suggested 
identity for the error can be formalized as 

«(M;0=E -[d(U}) E r^(MIM) 

x II M*;0, (5.1) 
alGc] 

where the terms for i = l , which are included here for 
simplicity, are, in fact, found to be necessary. 

Thus far, the analogy with the asymptotic functional 
suggests only a form of the terms in the error, but by 
pursuing it further, one can also understand the nature 
of the generalized coefficient operators T ( n ) ( p ] | [ c ] ) . 
Notice that if one expresses the factors fi(t) in terms of 
Liouville functions by using the series for f\ in terms 
of them [Eq. (2.1)], the asymptotic functional is 
thereby expressed as a sum over all terms of the form 

r«(M)n K«,M)fh(M), 

where [c] , the [#«], and the [r$] form a partition of, 
say, M + [ / ] into disjoint parts such that [ » ] C [ c ] 
and one or more of the sets [ j / J may be empty.42 Since, 
according to Sec. IVA, r ( n ) ( [c ] ) is a sum of all not-
more-than-singly-connected products of the Sm, this 
means that a typical term of the asymptotic functional 
is a not-more-than-singly-connected product of Sm 

operating on a product of the £OT, some of which are 
40 Such points are more-than-singly-connected in the proper 

sense of being only more-than-singly-connected. 
41 At this point the qualification "in the wider sense" is used by 

analogy; the precise sense of it is given in Sec. VB. 
42 This remark is validated in Appendix A. 
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hooked on and some of which are not and, moreover, 
that it is the sum of all such terms. According to the 
discussion in Sec. HIE , such terms are the possible 
asymptotic forms for not-more-than-singly-connected 
points. Therefore, we can describe the asymptotic 
functional as the sum of all the possible asymptotic forms 
for not-more-than-singly-connected points. To pursue our 
analogy further, it seems natural to insist that the co­
efficient operators r[n] (\T\ \ \jT\) be some linear com­
bination of all not-more-than-singly-connected products 
of the generalized scattering operators S ( [ w J | [ w 2 ] ) 
where [ w J C H - For, then the proposed generalized 
series for fny consisting of the sum of the asymptotic 
functional and the expression for the error given by 
Eq. (5.1), can be described as the sum of all possible 
asymptotic forms. 

B. Determination of T ( n ) ( [ m i ] | [m 2 ] ) 

To determine which linear combination of not-more-
than-singly-connected products of the Smim2 defines 
r ( n ) ( [ i ] | [ c ] ) , we will use a method analogous to the 
one used to determine the operator coefficients of the 
asymptotic functional. 

Since the expression for Sn given by Eq. (5.1) is sup­
posed to be an identity, the difference between / „ and 
the sum of this expression and the asymptotic func­
tional should vanish identically. An expression for this 
difference in terms of Liouville functions can be derived 
in parallel with the derivation of Eq. (2.4) for the error; 
this argument is also indicated in Appendix A. The 
result has the structure of Eq. (2.4) and differs only in 
that the sum in the factor SDj(r° which appears in the 
terms of the integrands is replaced by a sum over the 
terms T ( n ) ( [ « ] | [ » ] ) a ( [ t i ] ; H ) . In order that the 
terms of the difference between fn and its representation 
as a functional series vanish identically, it is necessary 
and sufficient that these analogs of the factors £>r(w) 

vanish. Moreover, the vanishing of these factors is 
transcribed by the equation 

*(M+P])= L r<*>(MIH) 

where for convenience we have put 

T ( n ) ( M ) ^ T ( n ) ( 0 | M ) < ( 5 J ) 

Thus, expressing the error as a functional of / i is 
equivalent to expressing a Liouville function by a de­
composition into the sum of all its possible asymptotic 
forms; namely, by Eq. (5.2). 

In order to derive the recursion relation which will 
determine the r ( n ) such that the decomposition, Eq. 
(5.2), is an identity, notice that since Eq. (5.2) is to 
hold for any (^+f)-Pa rticle point, it must certainly 
hold for any particular point we choose. Thus, just as 
we determined the n(n) by requiring that the factors 
3Vn ) vanish for points which are complete (w.s.), we. 
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will require that Eq. (5.2) be an identity for points 
which are tightly connected (w.s.). 

A point which is tightly connected (w.s.) has the 
history indicated by the wider sense analog of the case 
of Fig. 4 for which there are no particles \ja~], so that 
the early history of the particles \jT\ is given by the 
dashed lines. The qualification "in the wider sense" 
means essentially that the particles [_c] have no aimings 
to collide. In other words, a group, say, B + [ V ] , has 
a phase point which is tightly connected in the wider 
sense if the implied phase and the "derived" phases43 

of every subgroup, say, [nf\, are themselves tightly 
connected in such a way that the complete group for 
any one of these points consists of those of its particles 
which are in the complete group [_c~] of all of the par­
ticles. Thus, for such a point, if [m~] is any projected 
point or one of its associated derived points, one has 
according to Eq. (3.7) that 

£([>];0 = s ( M I M > II &(«;<), (5.4) 
aEN2] 

where \_m{] is the part of [ni] in the incomplete group 
p ] of the point while [w 2 ] is the part in the complete 
group [>]. 

Using the reduction given by Eq. (5.4), it is clear 
that for points which are tightly connected (w.s.), the 
terms of the decomposition, Eq. (5.2) can be evaluated 
and that the result is a relation between r ( r ° and the 
Smim2. This result, however, does not determine the r ( n ) . 
To find a recursion relation which does determine them, 
it will be sufficient to demand that the r ( n ) have the 
following property: Supposing that [_m{] and \jn{\ 
partition the set [V]+[T] , if any particles of the set [m{] 
have free legs (w.s.), then T ( n ) ( [wJ | [ )#2]) vanishes.44 

The notion of "having a free leg (w.s.)" is to be under­
stood in the following sense: A particle of a complete 
group which has no singly connected group hooked on 
will be said to "have a free leg."45 Moreover, if a par­
ticle remains a member of the complete group for any 
projected point and its associated derived points, then 
it has essentially all its legs free and it will be referred 
to as "having free legs in the wider sense."46 

To arrive at the desired recursion relation using this 
property notice that for points which are tightly con­
nected (w.s.) every particle of the complete group has 
a free leg (w.s.) so that, say, r ( w ) ( [ m j | [_m{]) vanishes 

43 A "derived" phase of, say, [nf\ is one for which one of the 
particles is displaced to a point produced by operating with a 
not-more-than-singly-connected product of S operators. 

44 This property may be considered as being a particular way of 
securing that, in evaluating Eq. (5.2) for some more-than-singly-
connected point, terms which are not the appropriate asymptotic 
form for the point do not contribute. The appearance of objects 
like r<n )(A|H) in Eq. (5.2) is related to the possibility of deter­
mining r<n)'s with this property. 

45 In Sec. IV, the leg of a particle which belonged to a complete 
group was "free" prior to its involvement with other particles; 
"having a free leg" means the trajectory is free during the entire 
prior time. 

46 For example, in Fig. 9 particle 3 has a free leg (w.s.), while 
in Fig. 10 it does not. 

unless its incomplete part [_m{] is entirely contained in 
the incomplete group of the point. Thus, in the relation 
between r ( n ) and $mim2 resulting from the application 
of Eq. (5.4) many terms simply vanish and one arrives 
at the following conclusion: Assuming that r ( n ) van­
ishes when any particles of its incomplete part have any 
free legs (w.s.), then for points which are tightly con­
nected (w.s.) the validity of the decomposition, Eq. 
(5.2), implies the recursion relation 

s(P]|H)=Er<»)(M|M+M) 
X ^ ( M ; [ W i ] | M ; C ^ 2 ] ) , (5.5) 

where the summation is such that : W + [ ^ i ] + [ w J 
= P]> M + [ w 2 ] ==[>], W C H + H + H , and 
where p ] and [c] partition, say, [V]+[T] . The "gen­
eralized A sum," A ( [ f l j ; [w{] \ [v{\; [w2]), is the mixed 
quantity analogous to the A sum appearing in the 
defining equation, Eq. (4.2), for the T*(n); indeed, it is 
obtained from ^4([^i]+[^2]; [^ i ]+Cw2]) by replacing 
each factor &(\jnj) by S([VwJ| [rnij) where [m{] is the 
part of ]jn~\ contained in [ z>J+[wJ . An explicit ex­
pression for the generalized A sum is given in Appendix 
D along with a slightly more explicit statement of the 
derivation of Eq. (5.5). 

As might be expected by their similarity to Eqs. 
(4.2), Eqs. (5.5) have a solution of the desired form; 
the generalized r ( n ) is a sum of all not-more-than-
singly-connected products of the SmiW2. Notice that for 
the case when the incomplete part [f\ is empty, Eqs. 
(5.5) reduce to Eqs. (4.2). 

I t might seem that we have only achieved a definition 
of the TM which makes the decomposition Eq. (5.2) 
an identity only for a particular kind of point. In fact, 
however, the recursion relations define r ( n ) which yield 
the desired identity for any point ( [V]+|T]) . This is a 
trivial consequence of the fact that the "last" recursion 
relations, namely, Eq. (5.5) for the case when [c] is 
empty, define the quantities r ( w ) ( [V]+[/] [ ( ) ) in just 
such a way as to yield the identity regardless of how the 
others are defined. 

Before continuing it should be verified that the r ( n ) 

defined by Eq. (5.5) have the property assumed in their 
derivation; namely, that any of them vanishes if its 

2' 2 | 2 I l|2 2 " 3 ' 2 l" 3 l' 
.. . .. _ _ . '*• .. . . _ . .. . i 

FIG. 9. A tightly connected point for which the incom­
plete group is {1,2}; points generated by various operators are 
illustrated. 



F U N C T I O N A L A S S U M P T I O N 

incomplete part contains particles having free legs 
(w.s.). A proof of this property can be given which 
parallels that of a related property to be discussed 
presently. Instead of displaying the formal proof, how­
ever, we will limit ourselves to an illustration of the 
property in a particular case.47 

For this purpose, we consider the point which has a 
history given by Fig. 9 and show that r ( 2 )(13|2) 
vanishes because particle 3 has a free leg. The solution 
of the recursion relation Eq. (5.5) for r ( 2 )(13|2) in 
terms of the Smim2 is given by 

r<2>(13|2) = S(13 |2) -S( l |23)£(3) 

-S (3 | 12 )£ ( l ) + S(123)£(l)£(3) 

-S (12) [£ (13) -S ( l | 3 )£ (3 ) 

— S(3|1)5(1)+S(13)€(1)£(3)D, (5.6) 

where we have replaced §>(0\[mj) and S([w] |0) by 
their equivalents; that is, by §>([mj) and £([w]), re­
spectively. Now, according to Fig. 9, the points 1 and 
3 are uncorrelated at the initial time as are I12 and 3. 
Hence, we have that 

S(13|2) = 5-,(123)5<(1)5*(3)S(1){(3) 
= *(1")S(3"), (5.7a) 

and that 

S(12)£(13) = S_((l123)St(li2)S<(3)S(li2)£(3) 

= *(1»)S(3), (5.7b) 

where the various points are indicated in Fig. 9. The 
remaining terms can be evaluated by inspection to 
yield, term by term, that 

rO)(13|2) = | ( l " ) £ ( 3 " ) - J ( l " ) £ ( 3 ' ) - « ( l ' ) € ( 3 " ) 

+ $a ' )£ (3 ' ) -* ( lu )$ (3 )+ | ( l 1 2)*(3 ) 
+ S(lw)*(3)-!(1«)$(3) = 0 ) (5.8) 

since 3 ' and 3 " are the same point. 

C. Behavior of Terms in the Error 

Having determined the r ( n ) so that the decomposition 
Eq. (5.2) is an identity, we have ensured that the ex­
pression for the error in terms of / 1 , given by Eq. (5.1), 
is also at least a formal identity and a definite algorithm. 
Whether this expression is useful for understanding the 
error for large times depends on the character of its 
terms. I t will be shown that there are no contributions 
to these terms from either growing or infinite legs so 
that the only contributions are from points which are 
tightly connected (w.s.). An expression for the error 
which embodies this result and is valid for large times 
is derived. 

Since the coefficient operators r(n) in Eq. (5.1) are 
mixed quantities, being partly functions and partly 
operators, there is the possibility that the regions where 
they are nonvanishing exhibit both the growing and 
infinite legs discussed in Sec. IVB. For any term, the 

47 A general proof is described in Appendix E. 
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growing legs might occur in the [t] subspace and the 
infinite legs in the [_c] subspace. 

For example, suppose that the 2-particle phase 
point (1.2) is complete for t and consider the integral 
of r ( 2 )(14| 23)/i(2)/i(3) over those phases of particles 3 
and 4 such that (1,2,3,4) has a history which can be 
diagrammed by the case of Fig. 6 for which the (2 — 3) 
aiming does not occur. In parallel to the argument in 
Sec. IVB concerning integrals over the^ j ( n ) , if r(2) (14123) 
vanishes when the (I12—4) collision occurs before the 
initial time, it will have a growing leg unless it also 
vanishes when this collision occurs after the initial time. 
The (2i2—3) collision leads to an infinite leg (in the 
same way as these arose for the Ui(n)), unless the inte­
grand vanishes for all locations of this collision. Note 
that showing that the integrand vanishes for all loca­
tions of both collisions would establish that these par­
ticular possible growing and infinite legs do not occur. 

This example suggests that not-more-than-singly-
connected groups could lead to both growing and in­
finite legs for the integrands of the error. Furthermore, 
the discussion of the integrals involving the r j ( w ) sug­
gests that it is points having groups which are singly 
connected in the wider sense which lead to this behavior. 
Since the presence of growing legs would cause the error 
to increase in time while the presence of infinite legs 
would cause the terms to diverge, Eq. (5.1) would be 
useless if this actually occurred. 

Therefore, one wants to prove a generalization of the 
previous result for the ri(n); namely, that supposing 
that [h] and [_k~] partition [V]+ |T ] if the point 
( I jO+Kl) . ^ such that U2 contains a group [ s ] which 
is not-more-than-singly-connected (w.s.), then r ( n )([/T][^]) 
vanishes. The type of point contemplated here is again 
as in Fig. 8 where the point (X,[V]) is unspecified; for 
example, it may be complete in whole or par t and there 
may be subsets of \Y] which are themselves not-more-
than-singly-connected (w.s.). We have found an in­
ductive proof of this property which is described in 
Appendix E. 

According to this property, r ( n ) certainly vanishes if 
there is more than one set which is not-more-than-
singly-connected (w.s.); that is, it vanishes for all 
points which can be diagrammed by the wider sense 
analog of Fig. 4 for which [ ^ C D Q + M - Since such 
points are all the points which lead to either growing 
legs or infinite legs or both, we have proved that the 
terms in the expression for the error given by Eq. (5.1) 
neither increase with time nor diverge because of such 
legs.** 

This property of the coefficient operators of the error 
together with the one previously given leads to an ex­
pression for the error for long times which makes the 
nature of the contributions explicit. 

In considering, say, the ^-particle error at a point 
[V], a time is "long" if it is larger than the time T(\jf\) 

48 The possibility of secular behavior or divergence for other 
reasons still remains. 
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for which [_n~] becomes complete. Such a criterion is 
suggested by the fact that the first term of the asymp­
totic functional is approximated by S ([VJIIaGE»] £1 (a '•> 0 • 
Since, in turn, this expression approximates %n only for 
times larger than the time for the point [_n] to become 
complete, one can expect the first term of the asymp­
totic functional to approximate fn in the same way. 
This criterion is also suggested by the behavior of the 
unintegrated terms (the 1=0 case) in the error.49 These 
terms contribute an essentially fixed error until the 
time the point \_n] becomes complete and then they 
vanish for this and all longer times. The fact that 
T ( W ) ( [ W J | [ # 2 ] ) , where [n{] and \ji{\ partition the set 
[n~] (i.e., those in the unintegrated terms), vanishes if 
\jf\ is complete can be established by an inductive 
proof.50 

Consider, then, the n-particle error at a point [it] 
which is complete for the time t. In addition to the 
vanishing of the unintegrated terms, one also has that 
the only nonvanishing contributions to the remaining 
terms are from points which are tightly connected (w.s.). 
This is a direct consequence of the second property of 
the r (w) since points which are tightly connected (w.s.) 
are just all those which have no groups which are not-
more-than-singly connected (w.s.). This result can be 
formalized by the statement that if the point [_n~] is 
complete for time /, 

x E r<«)(M|[*]) n /i(«;0, (5.9) 
i<C«C[0 

where the symbol F([T]|[V]) denotes the volume in 
/-particle phase space corresponding to all (n-\-T)~ 
particle points which are tightly connected (w.s.) and 
have the group [f\ as their incomplete group. The re­
striction of the terms of the integrand to those for 
which the incomplete part of the integrand [_ti] is con­
tained in p ] , the incomplete group of the point, is 
justified by the first property of the r ( n ) ; if \_h] is larger 
than [f\ it must contain members of [_c] all of which 
have free legs (w.s.) for points which are tightly con­
nected (w.s.). 

Like Eq. (5.1) the expression for the error given by 
Eq. (5.9) is formally exact but only under the condition 
that, for given \jt], the time is so large that \jf\ is 
complete, or alternatively that, for given t, one only 
considers points which are complete. I t should be noted 
that the validity of this expression depends on the 
asymptotic forms of Liouville functions since these are 
assumed in deriving the properties of the r (w). 

49 This remark is equivalent to the one just made. 
50 In fact, r ( n ) ( [ ^ i ] | \ji2J) vanishes because it is equal to a sum 

of differences each of which vanishes. 

VI. CONCLUDING REMARKS 

I t has been established that for n^2, fn can be 
exactly expressed as a functional power series in the 
one-particle probability density; indeed, according to 
Eqs. (1.1), (1.2), and (5.1) one has that 

l>0l\J [h]+[k]Mn)+[l] 

x II /i(«;0, (6.1) 

where the coefficient operators r ( r i ) are defined by the 
recursion relation, Eq. (5.5), as a sum of not-more-
than-singly-connected products of the generalized scat­
tering operators SmiW2. The group of terms for which 
[_ti], the incomplete part of the integrands, is empty 
constitutes the asymptotic functional f(£n~]\fi), while 
the remaining terms express the error &([n~]\t). The 
terms of ]([n] \ fi) are analogs of the irreducible cluster 
integrals of equilibrium theory and their coefficient 
operators are sums of time-independent substitution 
operators. The coefficient operators in the error terms 
depend explicitly on the time and on the initial correla­
tions [i.e., on £m(/ = 0)] . 

This series is a formal identity since it follows with 
no approximation by using the decomposition of a 
Liouville function given by Eq. (5.2) to reexpress the 
original series for / „ given by Eq. (2.1).51 Since, as has 
been pointed out elsewhere, the Liouville functions £m 

are analogous to the activity while /1 plays the role of 
the number density, this transformation may be con­
sidered to be the nonequilibrium analog of the trans­
formation from activity to density. I t should be men­
tioned one of us (R.P.) has shown that when /1 is 
Maxwellian, f(\jf]\fi) is, exactly to all orders, the 
usual density series for the equilibrium fn. 

I t has been established that points having groups 
which are not-more-than-singly-connected (w.s.) (i.e., 
as indicated by Fig. 8) make no contribution to either 
the terms of the asymptotic functional or the terms of 
the error. This means that the terms of the asymptotic 
functional contain no divergence due to infinite legs 
while the terms of the error neither increase with time 
because of growing legs nor diverge because of infinite 
legs. Because all more-than-singly-connected points ex­
cept those which are tightly connected (w.s.) have 
groups which are not-more-than-singly-connected (w.s.), 
this result also implies that the only contributions to 
the error come from points which are not only incom­
plete but, in particular, are tightly connected (w.s.). This 
feature of the error is embodied in Eq. (5.9) which 
expresses 8(\jf]',t) for long times; that is, for times 
longer than the time for the point [V] to become com­
plete. We remark that the validity of these results 
which depend on various properties of the r ( n ) presup­
poses the validity of the reductions of Liouville func-

61 This remark is validated in Appendix A. 
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tions and scattering operators and therefore they pre­
suppose the assumptions stated in the Introduction. 

I t is significant that the only nonvanishing contribu­
tions to the error come from points which are incom­
plete and tightly connected (w.s.). We interpret this 
to mean that the asymptotic functional correctly ac­
counts for all other dynamical events; that is, it not only 
accounts for all events which are uncorrelated initially 
(i.e., complete points) which are an obvious analog of 
Boltzmann's "chaotic' ' events but it also accounts for 
all events where the initial correlations only cause 
particles to divide into singly connected groups [i.e., 
points having groups which are not-more-than-singly-
connected (w.s.)]. Thus, some types of initial correla­
tion are taken into account by the time-dependent 
functional. 

A. Properties of the Integrals 

Having achieved these results it must still be estab­
lished that the integrals in Eq. (6.1) converge at arbi­
trary times and that the error decreases with increasing 
time. Clearly, unless both of these features are present 
either the series is purely formal or f{[n~] \ fi) is not the 
asymptotic form or both. We intend to discuss these 
points in detail in another place where we will give 
explicit estimates of the error terms. For the moment, 
we confine ourselves to a few remarks. 

Preliminary estimates support the view that all the 
integrals do converge and that the contributions to 
the individual error integrals are proportional to in­
verse powers of the time for large times. I t appears that 
both kinds of integrals have the same possible source 
of divergence and furthermore that the error integrals 
decrease with increasing time for the same reason that 
they converge. Thus, essentially the same investigation 
will establish both features of our results. 

For example, we have considered the contribution 
to the terms, fd(3) r<2>(0| 123)/1(l)/ i(2)/1(3) and 
fd(3) r^2)(13|2)/1(2), due to all points which can be 
diagrammed as in Fig. 10 where it is understood that 
the (I12—3) aiming-to-collide occurs at the same time 
as or earlier than the (2i2—3) collision. For all the 
points for which the (I12—3) aiming-to-collide occurs 
after the initial instant the first of these two integrals 
is certainly finite while the second one, a term in the 
two-particle error, simply vanishes. Thus, the conver­
gence of both integrals (and, indeed, the whole value 
of the second one) is decided by the contributions from 
all points for which the (I12—3) aiming-to-collide 
occurs at or earlier than the initial instant. Included 
in these are those points for which the (2i2—3) collision 
occurs arbitrarily early in time (compared to the initial 
instant) and such points might cause divergence of the 
integrals. Since the integrands of both integrals have 
similar behavior for such points, in this case convergence 
is indeed decided by essentially the same investigation 
for integrals of both kinds. We have verified that no 
divergence occurs for any reasonable behavior of /1 in 
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I J,2 2 3 

0 

FIG. 10. A simple example of a tightly connected point; the 
incomplete group is {1,3}. Because of the (I1.2—3) aiming to 
collide, particle 3 is not singly connected in the wider sense. 

momentum space. In addition, we find that for large 
times the above error integral is proportional to (t)"1; 
that is, (t)"1 is a factor of the result which remains a 
functional of fi(t). The decrease with time of the error 
integral and the convergence of both of them are direct 
consequences of the manner in which the volume of the 
contributing points depends on the time of the (2i2—3) 
collision. Qualitatively, for a fixed ratio of the time of 
the (2i2—3) collision to the time of the (I12—3) aiming-
to-collide, the volume decreases as the (2i2—3) colli­
sion is shifted to earlier times because then more re­
strictive requirements are imposed on the momentum 
of particle 3 in order that the (I12—3) aiming-to-collide 
continues to occur. 

There is no apparent reason to doubt that the fea­
tures of this example are general. In particular, it is 
natural to expect that the additional restrictions (e.g., 
for aimings-to-collide and/or recollisions) on the phase 
of a particle (or group of them) which are required to 
make a point tightly connected (w.s.) will result in a 
decrease with time of the volume corresponding to 
such a point. 

B. Consequences for the Boltzmann Equation 

The expressions for fn which have been derived are 
relevant to the question of the existence and form of a 
"generalized Boltzmann equation": that is, an equation 
for /1 in which the time rate of change of f± due to 
collisions is approximated to higher orders in the density 
by time-independent functional of /1 only. A possible 
basis for such a study is provided by using the identity 
for / 2 obtained from Eq. (6.1) to express the integral 
term in the exact equation for/ i (see Paper I) . The re­
sulting identity states that the total time derivative of 
/1 is expressed as a series of "collision integrals" which 
are time-independent functionals of /1 plus a sum of 
error integrals which depend on initial conditions. The 
binary collision integral is (except for gradient terms) 
the same as Boltzmann's while the ternary collision 
integral is simply 

d(2)d(3) F12-VP1[S(i23)-S(12)oS(13) 

-S(12)S(23) + S(12) ] / ( l ) / (2) / (3) . 
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Presuming the validity of the remarks in Sec. VIA 
concerning the decrease with time of the error, it is 
reasonable to conjecture that the equation which re­
sults from this identity for f\ by dropping all the error 
terms is the desired generalized Boltzmann equation 
and furthermore that the exact fi(t) approaches some 
solution of this approximate equation after long enough 
times. In view of the slow decrease with time of the 
error terms, however, the exact nature of this approach 
and, more generally, the whole relationship of the solu­
tions of the approximate equation to the exact fi(t) 
for arbitrary initial conditions may be quite complex. 
I t is perhaps useful to emphasize that the / i appearing 
in Eqs. (6.1) is the exact solution of the infinite hierarchy 
and not the solution of this proposed generalized Boltz­
mann equation. 

A second conjecture is on firmer ground; namely, 
that the solutions of this generalized Boltzmann would 
provide an exact description of a stationary state simply 
because for such states all memory of the initial condi­
tions (i.e., the error terms) must have vanished. Fur­
thermore, this should also be true of the error terms in 
the expressions for the ^-particle probability densities 
for n^ 2. Thus, for a stationary state, fn will be exactly 
equal to fn([nJ)\fi). where f± denotes the stationary 
solution of the generalized Boltzmann equation. Thus, 
the generalized Boltzmann equation is completely ade­
quate for the computation of transport coefficients.52 

APPENDIX A: EXPRESSION FOR En AND 
RELATED RESULTS 

The purpose here is to derive the expression for the 
error given by Eq. (2.4) and indicate the parallel argu­
ment for the difference between fn and its functional 
series as given by Eq. (6.1).53 I t is shown that the de­
composition of Liouville functions given by Eq. (5.2) 
implies Eq. (6.1). The expression for i^ ( n ) in terms of 
Liouville functions is also given. 

To derive Eq. (2.4), first form the product of / i («) , 
for a £ [ V ] + [ T ] , by using the formal series, Eq. (2.1), 
for the case n=l. The result is that 

II /i(a)=Z-A(M) 
a£[n]+W k>0kU 

X Z n * a ) («,[>«]), (Al) 
2«[A«] = [A] a G M + M 

52 The procedure would be a suitable generalization of the 
Chapman-Enskog one (see, for example, Refs. 1 and 2). A parallel 
approach to the transport coefficients proceeds to their expressions 
in terms of autocorrelation functions via master equations. In­
vestigations in this line are exemplified in the work of L. Van Hove 
[Physica 23, 441 (1957)], I. Prigogine [Physica 27, 629 (1961)], 
R. Zwanzig [Phys. Rev. 124, 983 (1961)], and J. Weinstock 
[Phys. Rev. 132, 454 (1963)]. The detailed relationship between 
the two methods has not been given. It has been shown, how­
ever, that they yield the same results to lowest order in the 
density [see M. S. Green, J. Chem. Phys. 22, 398 (1954)]. 

63 These are equations in the text; equations in these Appendices 
are numbered separately. 

where the summation is over all partitions of \Jf\ into 
(n+l) disjoint parts [& J , some of which may be empty. 
Equation (Al) is derived from the direct product ex­
pression by first grouping terms with the same number 
of variables of integration and then making use of the 
dummy character of these variables. 

If one uses this result to express the product of / i ' s 
in the asymptotic functional, again collecting terms 
with the same number of integration variables and 
using the dummy character of these variables, one 
derives that 

/ (w i /i)=£ ~ [mi) £ r<»> (w ; ra) 

X n *(1) («,[*«]), (A2) 

where the summation is over all partitions of [/] into 
(n+h+1) disjoint parts [h~] and the [&J , some of 
which may be empty. 

Using Eq. (A2) for / ( M | / i ) and Eq. (2.1) for /» 
one has an expression for the error (referred to in the 
text) in terms of \pi{n) and ^ ( 1 ) . 

To derive Eq. (2.4) we need to express \piin) and \f/k
a) 

in terms of Liouville functions. The solution of the de­
fining recursion, Eq. (2.2) is, in fact, given by 

*(n>([«];[*])= £ ?(M+H)4o([r]) , (A3) 
[<Z]+[r]=W 

where ^o(W) is defined by Eq. (2.7). This expression 
is the obvious analog of the equilibrium statement; 
that is, one sums all distinct products of the £w, the 
arguments of which partition [V]+[T] into disjoint 
parts, one of which contains all of \jf\. 

Using the result, Eq. (A3), for the case n= 1 to ex­
press the factors appearing in Eq. (A2), one has after 
some rearrangement of summations that 

/(WI/i)=Z Vi(ffl) £ -(n)(W) 
i>ol\J W+Cw]=M+y] 

MCO] 

x E II *(«M) 
S«[ga]+[r]=[w] a £ W 

x E n tfoavj), (A4) 
S«[ra] = [r] a£[v] 

where we have dropped the distinction between [n~] 
and the rest of the particles in writing r ( n ) . 

Now, it can be shown that 

£ n ô(M) = ̂ -1(W) 
Z«[r«]-[r] « £ [ . ] 

= £ ^*([ri])tfo([rs]),(A5) 
[ri] + [r2] = [r] 

where da([r~]) is defined by Eq. (2.7). Before proving 
these equalities let us derive their implications. Clearly, 
if we use the first equality in Eq. (A4) we verify that 
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the description of the terms in f(£n] | / i ) given in Sec. V.A is accurate. Then, using the second equality to 
evaluate Eq. (A4) for / ( [ V ] | / i ) , one finds after some further rearranging of the order of summations that 

/ (Wl/0 = E -fddQ) X tfo(M) 

X{ E r^(M) E n f(«,[g«])^-2(M)}. (A6) 
[»]C&] 

The expression for fn in terms of Liouville functions is 
trivially obtained by substituting the expression for 
i/^(n) given by Eq. (A3) into Eq. (2.1); the result is that 

i>ol\J 

x E f(W+M)^0(M). (A7) 
[A] + [&]=[Z] 

I t follows immediately from Eqs. (A6) and (A7) that 
the error can be expressed as in Eq. (2.4). 

As a third result, notice that the steps leading from 
the original form of the asymptotic functional to Eq. 
(A6) can be repeated without any modification for the 
series of terms for fn given by Eq. (6.1); the result, 
which corresponds to Eq. (A6), is that this series is 
equal to 

£ - (mi) E tfo(M) 
i>oi\j EA]+[fe]=m 

x E rW(M|H) 
C«]+W + M = M + M 

W C W + W 
X ft ([>];[>]), (A8) 

where we have used the definition of ®([v~]; [w~]) given 
by Eq. (2.6). This result justifies our remarks in the 
text about the analogs of the factors 3Dz(n). 

Finally, since substituting the decompositions of 
£ ( M + M ) given by Eq. (5.2) into Eq. (A7) yields 
that fn is equal to the expression (A8) and since this 
latter expression was just shown to be equal to the 
functional series for fn, we have proved the equivalence 
of the decomposition of Liouville functions and the 
functional series. 

Returning to the proof of the equalities (A5) consider 
the terms of the left-hand side of the first equality. By 
definition of £f0, these terms arise by partitioning each 
set [r«] into, say, pa nonempty parts \jaj]. Thus, the 
arguments of the £m in each term form a partition of [r~] 
into, say, p nonempty parts [co;~|, so that this first sum 
may be re-expressed as the sum over all such partitions 
with a coefficient, say, cvp. To compute the coefficient, 
note that for a fixed set of pa's, there are pl/Tiapal 
terms in the original sum which are identical to a term 
with a given partition of [/] into p parts [coj. Further­
more, each of these terms has a coefficient (— l)s«^« 

XlXc^aL Therefore, cvp is given by 

*p= E ==^-C(-l)z-p-II#a!], (A9) 
2«P«=P IX« Pa ! 

and this sum is easily evaluated by using a generating 
function. In fact, we find that cvp is indeed equal to the 
coefficient appearing in the definition of #i>_i ( [ / ] ) . 

That the second equality also holds follows if da 

obeys the recursion relation: 

^-2([>])= E ^ i ( ra ) f (M) . (AIO) 
[h]+[k]=[r] 

For, using Eq. (A10) to eliminate ^v-2(\jj), one finds, 
after some rearrangement of summation, that the 
right-hand side of the second equality of Eqs. (A5) can 
be expressed by 

E ^-i(M) E f([*i])^o(M). 
lh] + [k] = [r] [ki] + [k2]=[k] 

This expression is, however, equal to ^ - i ( [V]) because 
the sum which appears as a factor vanishes unless [£2] 
is empty. To see this, note that the arguments of the 
£m of each term in the sum form a partition of \Jz~] into, 
say, p nonempty parts. But, a given such term arises 
in exactly one way with coefficient (— l)ppl from the 
terms where \_k{] is empty and in p ways with coeffi­
cient (—l ) p - 1 ( ^~ 1)! from terms where [_k{] is one of 
the given sets. Hence, the coefficient of any such term 
is (— l)ppl+p(—i)p-1(p— 1)!, which vanishes identi­
cally.64 Hence, the second equality is established if 
Eq. (A10) is valid. 

To establish this recursion relation note that again 
each term, of the right-hand side is a product of the £w, 
the arguments of which partition [r~] into, say, p non­
empty sets, and that these are the terms in #V_2([V]). 
Furthermore, a given such term arises in exactly one 
way with coefficient (— \)v(y— \+p) \/(v— 1)! and in p 
ways with the coefficient (—l)p_1(zi—1+^—1) \/(v—l)!. 
The total coefficient is, therefore, (— l)p(v— 1+p)!/ 
(v-1) l+pi-iy-^v-l+p) \/(v-l)! which is just the 
coefficient appearing in #„_2 ( [ / ] ) . 

APPENDIX B: PROPERTIES OF LIOUVILLE FUNCTIONS 
AND SCATTERING OPERATORS 

Because of the assumed finiteness of the range of 
force and the correlation length, strong heuristic proofs 

54 This result also established Eq. (A3). 
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of the reductions of Liouville functions and scattering 
operators can be given. 

To understand the asymptotic form of, say, £(\jn~]; t), 
for a complete point [ w ] , notice that when one ex­
presses this function in terms of its initial value ac­
cording to Eq. (2.3), the product condition allows the 
factorization of the initial value into one-particle func­
tions. These can then be transformed to time t by using 
the inverse of Eq. (2.3) with the result that 

f(W;0=5_«(W) IT st(a) II M«;0. (BI) 

Since the point [nf\ is assumed to be complete so that 
the particles are dynamically independent prior to the 
initial instant, this expression is equivalent to that 
given in Eq. (3.3) where the operator has been replaced 
by its limiting value. 

An argument for the validity of Eq. (3.5) for not-
more-than-singly-connected points proceeds in similar 
fashion. By assumption the groups {«,[$«]} and [dp] 
are statistically and dynamically independent at the 
initial instant so that one can again express the func­
tion in terms of its initial value and apply the product 
condition in the obvious way. When each of the factors 
£ ( [ ^ x ] ; 0) which appears is transformed back to time 
t by use of 5 t([wx]), one sees that to establish Eq. 
(3.5) one must show that the operator 

•MM+I: M+E ra n ^ M m ^ r a 
a 0 a£[c] 0 

is equivalent to S([_cJ). Since the groups [d&] are sta­
tistically and dynamically independent for the entire 
interval, application of Eq. (3.1) yields that the operator 
is equivalent to 

• M H + E [>«]) II St(alsaJ). 
«GW 

The final step follows by observing that, because of the 
third condition which is necessary in order that a point 
be not-more-than-singly-connected (see text), the image 
point of the particles, a and [ s j , / seconds earlier is 
the same whether it is computed according to the 
(l+s a)-part icle history of the point (5,[s<J)> o r a s the 
projection onto the space of {a,{j J } of the (c+X^«)-
particle history of the point ( H + H [/<*])> that is, in 
operating on members of the group {«,[$«]}, S([V]) 
XS_*(a,[>a]) is equivalent to S - * ( H + 2 I [ > « ] ) . 

The derivation of the reduction for a tightly con­
nected point leads in a natural way to the definition of 
the generalized scattering operator; having accom­
plished this, the argument just given for including the 
hooked on sets [s J can be used to derive the general 
result Eq. (3.7). For a tightly connected point, say, 
P ] + H > the complete group of which is [V], one can 
again apply the product condition in the obvious way 

with the result that 

<f(M+H; 0 = *(KU o)^(H+M) 

x II W I I M«;0, (B2) 
a Sic] «G[c] 

where the point p ] _ * is defined to be equivalent to 
- S - * ( M + H ) K 1 - But, since for a tightly connected 
point every member of [_c] has a free leg, when operat­
ing on members of [<;], the time-dependent operator 
for the second factor in Eq. (B2) is equivalent to 
§ ( P ] + M ) as defined by Eq. (3.4). Thus, for tightly 
connected points one arrives at the case of Eq. (3.7) 
for which the sets [s J are empty. 

Because it is needed to prove the properties of the 
r ( n ) and because it illustrates the argument which 
proves the general result Eq. (3.9), we want to derive 
the reduction of S ( C ^ J | LmH f ° r the point the history 
of which is diagrammed in Fig. 8. Since [m{] and [w 2 ] 
partition [V]+X+|V], [wy], say, contains [Yy], the 
part of it in [V], and \jj], the part of it in \_s~]. Assuming 
first that the particle X is a member of \jn{], and 
applying the product condition to £([/i+X+,yJ._.*; 0), 
one has that 

5([fm]|[ffiJ) = [5-*([f]+X+H){(Cri];0)] 
X[S- t ( [ r ] +HH) { ( \ ,M ;0 ) ] 

X 5 ( [ r ] + X + H ) . (B3) 

The group [ s ] , however, plays no role in determining 
[r{}~t, so that this point can be computed using 
6 ,_ i([r]+X). Furthermore, because [ s ] is singly con­
nected, when operating on the group, {X,[sJ}, 
S - i C W + X + H ) is equivalent to S([r]+X)S_*(X,[>]), 
and also § ( [ / ] + X + H ) is equivalent to S(|V]+X) 
XS(X[Y]). Using these three results to re-express Eq. 
(B3), one finds directly that 

S ( M | M ) = S.([rJ I M+X)5(X,[s JI M ) . (B4a) 

In the other case when particle X is in the group \_ni2], 
one finds in a similar way that 

S( [> i ] I M ) = S([f 1] I M + X ) S ( [ J X ] I X , M ) . (B4b) 

APPENDIX C: COEFFICIENT OPERATORS OF/([>] |/0 

Here we give the coefficient of the terms in the solu­
tion of Eq. (4.2) which defines ri{n\ Explicit expres­
sions for the first few of the TI(2) are also given. 

In general, any term in r ( n ) can be divided into a 
number of disjoint parts which are singly connected 
within themselves. Suppose a term has a such parts 
and a total of, say, /u, S operators. Also, let the total 
number of particles which appear explicitly be (n+h) 
and, finally, let the total number of particles appearing 
in that singly connected part which contains the first 
S operator be (n-\~h). The coefficient of this term is 
(n+h-l)(n+l-2)l(-l)»-°/(n+h-a)L 

Denoting the operator S([W]) simply by the symbol 

file:///_ni2
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( [w]) , the first few of the -n(2) in terms of the §m are 
given by55 

T 0 < 2 > ( 1 2 ) = ( 1 2 ) , (CI) 

r 1 <«(12 ;3 )=(123) - (12 ) (13) - (12 ) (23)+(12) , (C2) 

and 

r2^>(12;34) 
= (1234)- (12) (234) - (12)(134)+ (12) (13) (14) 

+ (12) (13) (34)+ (12) (14) (13)+ (12) (14) (34) 
+ (12) (23) (14)+ (12) (23) (24)+ (12) (23) (34) 
+ (12) (24) (13)+ (12) (24) (23)+ (12) (24) (34) 

- 2 (12) (13) — 2 (12) (14) — 2 (12) (23) — 2 (12) (24) 
- (12)(34) - (123)(14) - (123)(24) - (123)(34) 
- (124) ( 1 3 ) - (124) ( 2 3 ) - (124)(34)+2(123) 

+-2(124)+2(12). (C3) 

APPENDIX D: RECURSION RELATION FOR *<»> 

We will establish that for a tightly connected point 
( H + M ) > t n e decomposition, Eq. (5.2), reduces to 
the recursion relation, Eq. (5.5), if one assumes that 
T(n) vanishes when any particles in its incomplete part 
have any free legs (w.s.). The result of assuming this 
property of the T(W) and using the reduction, Eq. (5.4), 
for the point, ( H + H ) > itself is expressed by stating 
that 

5(MIH) n €i(«;0 
aeic] 

= Er<»>(MIM+M) 
xa(M+M;[ W l ]+[ W 2 ] ) , (Di) 

where the summation is such that : [ ^ ] + [ ^ i ] + [ w i ] 
= [<], M+|>2]=[Y], M C M + M + M , and 
where in the nonvanishing terms of Eq. (5.2) we have 
split [V] into disjoint parts, [jjy], [ f l j being the part in 
[ i ] and similarly for [w~]. Note that since [VjCjjT] 
+ [ D I ] + [ ^ 2 ] , the groups [wjl partition some subset 
of [ /] . Recalling the definition of & ( M ; [ V ] ) , the 
general term in this sum has the form 

r<">(MIM+M) n f(a,[?J)IIf(W), 

where the [ g J and [r$] together form a partition of 
[ w i ] + [ w 2 ] . For a point which is tightly connected 
(w.s.), however, the argument points of every Liou-
ville function of such a term reduces according to Eq. 
(5.4) so that it is equivalent to 

T < " > ( M I M + M ) n s(«,[?iji:?*«]) 

n 8(c?i-]i«,[?»«])ns(c»'i(.]/[rw])n *.(«;<). 
66 We note again that operators with indices in common do not 

commute. 

The group [ # j J is the part of Q / J contained in [WJ~] 
and similarly for [Vy/J. The product of £i's runs over 
the group [c~] because 

M + £ C g 2 j + E [ ^ ] = M + C W 2 ] = [ c ] . 
« ^ [ n ] + [ n ] j8 

Since this reduction is valid for every term of Eq. 
(Dl) , Eq. (5.5) follows with the A sum defined by 

^ ( M ; C w i ] | M ; [ w 2 ] ) 

(v1+v2-2+p)\ 
= £ ( - ! ) * — — n 8(a,CffiJ|[«,a]) 

(» l+t '2—2)! a£[»l] 

X II &(Lqi.lW,lq*aJ)IL&(lrv>l\lrtd). (D2) 

The sum here is over all disjoint sets for which [wjl *s 

partitioned into (^1+^2) sets, \jqj J , some of which may 
be empty, and p nonempty sets, [V^]. In summing on 
the [V//J, permutations are not counted as distinct 
terms so that the sum over sets with a given index 
j is the same as in A (|j> J + D ^ )LWJ1-

APPENDIX E: PROPERTIES OF THE *<"> 

We have found inductive proofs of the properties of 
the r ( n ) stated in Sees. IV and V. Actually, we prove 
equivalent statements; namely, that 

(a) If the point (X,[r]) is arbitrary except that 
particle X has a free leg (w.s.), then r ( n )(X[>i] | [r2]) 
vanishes for any sets [rf] which partition [ r ] ; 

(b) If the point (X,[>],[>]), where W C { X , [ r ] } , is 
arbitrary except that the group [_s~\ is not-more-than-
singly-connected (w.s.) to [V] through particle X, then 
T ( n ) ( [^ i ]+Xi+[s i ] | [ r 2 ]+X2+[s2] ) vanishes for any 
sets \jj] which partition [r], any sets [s/] which parti­
tion [s^\, and for either the case for which Xi=0 and 
X2 = X or the opposite one. (See Fig. 8.) I t is our inten­
tion to publish the details of the proofs of these state­
ments in another place56 but the following description 
may be helpful. 

Consider proving the second property. I t is easy to 
verify that it holds for the case of r ( r i ) (0 | [V]+/ ) for 
which there is only one particle / in the group of addi­
tional particles [ /] . Moreover, the recursion relation, 
Eq. (5.5), for S([ci] |[c2]) can be written as an ex­
pression for T(n)([ci]]| [^2]) by using the fact that 
A (0; 010; ^2)^ 1. In this equation one notices that the 
index pairs (u,v), which denote the "size" of the set 
pairs ( [ V ] | M ) , which appear as the arguments of the 
Tu,v

{n\ are all such that n^u+v<ci+C2 with u^ a and 
either U9^c\ or V9^C2 (but not both); one can say that 
the index pairs which appear are all "less than" the 
pair (ciyC2). These remarks suggest that one can make 
a proof by proving that : If the property holds for all 
the TUiV

(n) for which (u,v) is less than (ci,C2), then it 

56 That is, in the J. Res. Natl. Bur. Std. 
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holds for rClC2
(n). Recalling that the property is vacuous 

if there are no additional particles \T\ (so that then one 
can define the property to hold), it is easy to verify 
explicitly that this implication does yield an induction. 

To prove this implication for the case where \jcj] 
= [ f i ] + ^ j + C ^ ] j first evaluate the expression for 
r w f c ] + ^ i + t i ] | M + ^ + M ) [from Eq. (5.5)] 
assuming the first property (to be proven independently) 
and the hypothesis of the implication; the result is that 

r ( n ) ( [ r i ] + X 1 + [ j J ] | [ r 2 ] + X 2 + M ) 
= S ( [ r i ] + X i + M | [ r 2 ] + X 2 + M ) 

+ M I W ; W + M ) , (El) 

If these results are used to evaluate the terms of Eq. 
(El) one finds that, indeed, T ( n ) ( [ f 1 ] + X i + [ ^ i ] | j>2] 
+X 2 +[s 2 ] ) vanishes. To prove Eq. (E2) one first 
verifies that any term of the left-hand side does reduce 
to one of those appearing on the right-hand side; then, 
a combinatorial argument (similar to the ones in 
Appendix A) establishes the coefficient. 

The first property is proved by essentially the same 
argument. By direct verification it holds for r (w) (X | [V]) 
where {X,[f]}==[V] and the same implication would 
establish it for r u ) ( X + [ f i ] | [ r 2 ] ) . Assuming the hy-

where the summation is such that : [ V l + t ^ i ' l + D ^ i ' ] 
= [ > i l & i " ] + [ > i " > X 1 , M + M = [ r 2 ] + X 2 , W 
C [ < J + M + & i " ] + M . The fact that no T<»> 
X ([u~] I \jij) appears such that XiC[V] *s a consequence 
of the first property [Xx should be treated as having a 
free leg (w.s.)], while the nonoccurrence of cases where 
members of [s~] are in \jf} or [jo] is a consequence of 
the second.57 Further evaluation of the right-hand side 
of this equation is made by using the fact that the 
group [5] is not-more-than-singly-connected (w.s.) so 
that the result for S ( [ w J | [w2]) given in Appendix B 
applies to the first term and also to every factor of the 
A sum of every other term; we have shown that this 
implies (this is the nontrivial step) that, for every term 
in Eq. (El) , 

pothesis of the implication yields an expression for 
T(n) (X-ffVJ I (r2]) which is, in fact, the case of Eq. (El) 
for which \x is particle X and the sets \jj] are empty. 
Furthermore, because particle X is a free leg (w.s.), 
S(X[fxH|[^2]) and all the factors §>mim2 in this result 
have reductions and this implies the validity of the 
analog of Eq. (E2). The desired result then follows by 
algebra. 

57 In Eq. (El) we have assumed that particle X is not a member 
of [n] (then [w\"~] could not be equal to Xi). If \c[n}, take 
[wi"] to be empty to obtain the correct expression. 

rw([«']IC»i']+[»i"]+MM (M+[" / ' ] ; l>i ' ]+[>/ ' ]+MIW; M + M ) 
= T ' » H M I W ] + [ » 1 " ] + W ) 4 ( K ] ; [ W / ] | W + [ < ] ; M + U V D s C X i O J l A s M ) . (E2) 


